Нелинейные колебания и синхронизация колебаний. Нелинейные колебания Мигулин В.В. Основы теории колебаний

Нелинейные эффекты могут проявиться многими разнообразными способами. Классический пример – это нелинейная пружина, в которой восстанавливающая сила нелинейно зависит от растяжения. В случае симметричной нелинейности (одинаковый отклик при сжатии и растяжении) уравнение движения принимает вид

Если затухание отсутствует и , имеются периодические решения, в которых при естественная частота увеличивается с амплитудой. Эта модель часто называется уравнением Дуффинга по имени изучавшего ее математика (рисунок 1.54).

Если на систему воздействует периодическая сила, то в классической теории полагают, что и отклик будет периодическим. Резонанс нелинейной пружины при частоте отклика, совпадающей с частотой силы, показан на рисунке.

Рисунок 1.54 - Классическая резонансная кривая нелинейного осциллятора с жесткой пружиной в случае, когда колебания периодичны и имеют тот же период, что и вынуждающая сила (a и b определяются в уравнении)

При постоянной амплитуде вынуждающей силы существует диапазон вынуждающих частот, в котором возможны три различных значения амплитуды отклика. Можно показать, что штриховая линия неустойчива, и при росте и уменьшении частоты происходит гистерезис. Это явление называется перебросом, и оно наблюдается в экспериментах со многими механическими и электрическими системами.

Существуют и другие периодические решения, такие, как субгармонические и супергармонические колебания.

Если вынуждающая сила имеет вид , то субгармонические колебания могут иметь вид плюс более высокие гармоники ( –целое число).

Теория нелинейного резонанса зиждется на предположении, что периодическое воздействие вызывает периодический отклик. Однако именно этот постулат оспаривает новая теория хаотических колебаний.

Самовозбуждающиеся колебания – другой важный класс нелинейных явлений. Это колебательные движения, которые происходят в системах без периодических внешних воздействий или периодических сил (рисунок 1.55).


Рисунок 1.55 - Примеры самовозбуждающихся колебаний: а – сухое трение между массой и движущимся ремнем;

б – аэроупругие силы, действующие на тонкое крыло

В первом примере к колебаниям приводит трение, создаваемое относительным движением массы и движущегося ремня.

Второй пример иллюстрирует целый класс аэроупругих колебаний, при которых, стационарные колебания вызывает стационарный поток жидкости за твердым телом на упругой подвеске.

В этих примерах в системе присутствуют стационарный источник энергии и источник диссипации, или нелинейный демпфирующий механизм. В математическую модель этой цепи источник энергии входит в виде отрицательного сопротивления (уравнение Ван дер Поля):

Энергия может поступать в систему при малых амплитудах, но при увеличении амплитуды ее рост ограничивается нелинейным затуханием.

При анализе уравнения Ван дер Поля, удобно перейти к безразмерным переменным, нормировав пространственную переменную на , а время – на , так что уравнение принимает вид

,

При решении уравнения его представляют в виде ситемы уравнений первого порядка

Колебательные движения таких систем часто называются предельными циклами. На рисунке 1.56 показаны траектории осциллятора Ван дер Поля на фазовой плоскости. Малые колебания раскручиваются по спирали, приближаясь к замкнутой асимптотической траектории, а движения большой амплитуды стягиваются по спирали к тому же предельному циклу (где ).

Рисунок 1.56 - Решение с предельным циклом для осциллятора Ван дер Поля, изображенное на фазовой плоскости

При изучении подобных проблем часто возникают два вопроса. Какова амплитуда и частота колебаний на предельном цикле? При каких значениях параметров существуют устойчивые предельные циклы?

При малых , предельный цикл представляет собой окружность радиуса 2 на фазовой плоскости, т. е. , где через + ... обозначены гармоники третьего и более высоких порядков.

При больших движение приобретает вид релаксационных колебаний, показанных на рисунке 1.57 с безразмерным периодом около 1.61 при .

Рисунок 1.57 Релаксационные колебания осциллятора Ван дер Поля

Более сложна задача с периодической силой в системе Ван дер Поля:

Поскольку система нелинейная, неприменим принцип суперпозиции свободных и вынужденных колебаний. Вместо этого возникающее периодическое движение захватывается на вынуждающей частоте, когда она близка к частоте предельного цикла.

При слабом внешнем воздействии имеются три периодических решения, но лишь одно из них устойчиво (см. рисунок). При больших значениях амплитуды силы существует только одно решение. В любом случае с увеличением расстройки фиксированном захваченное периодическое решение оказывается неустойчивым и становятся возможными другие типы движения.

При больших отличиях вынуждающей и собственной частот в системе Ван дер Поля появляется новое явление – комбинационные колебания, иногда называемые почти периодическими или квазипериодическими решениями, вида

Когда частоты и несоизмеримы, т. е. – иррациональное число, решение называется квазипериодическим. Для уравнения Ван дер Поля , где – частота предельного цикла свободных колебаний (рисунок 1.58).

Рисунок 1.58 - Амплитудные кривые для вынужденного

движения осциллятора Ван дер Поля

Ниже мы еще поговорим о квазипериодических колебаниях, но, поскольку они не периодичны, их можно спутать с хаотическими решениями, каковыми они не являются. (Для них спектр Фурье решения состоит из двух пиков при , )

Когда , и несоизмеримы, фазовый портрет решения представляет собой незамкнутую траекторию, и для графического представления квазипериодических функций используется другой способ.

Делается стробоскопическая выборка с интервалом ; положим и обозначим , .

Тогда соотношение сводится к

Нелинейные эффекты могут проявиться многими разнообразными способами. Классический пример - это нелинейная пружина, в которой восстанавливающая сила нелинейно зависит от растяжения. В случае симметричной нелинейности (одинаковый отклик при сжатии и растяжении) уравнение движения принимает вид

Если затухание отсутствует и имеются периодические решения, в которых при естественная частота увеличивается с амплитудой.

Рис. 1.7. Классическая резонансная кривая нелинейного осциллятора с жесткой пружиной в случае, когда колебания периодичны и имеют тот же период, что и вынуждающая сила (а и определяются в уравнении (1.2.4)).

Эта модель часто называется уравнением Дуффинга по имени изучавшего ее математика.

Если на систему воздействует периодическая сила, то в классической теории полагают, что и отклик будет периодическим. Резонанс нелинейной пружины при частоте отклика, совпадающей с частотой силы, показан на рис. 1.7. Как показано на этом рисунке, при постоянной амплитуде вынуждающей силы существует диапазон вынуждающих частот, в котором возможны три различных значения амплитуды отклика. Можно показать, что штриховая линия на рис. 1.7 неустойчива, и при росте и уменьшении частоты происходит гистерезис. Это явление называется перебросом, и оно наблюдается в экспериментах со многими механическими и электрическими системами.

Существуют и другие периодические решения, такие, как субгармонические и супергармонические колебания. Если вынуждающая сила имеет вид , то субгармонические колебания могут иметь вид плюс более высокие гармоники ( - целое число). Как мы увидим ниже, субгармоники играют важную роль в предхаотических колебаниях.

Теория нелинейного резонанса зиждется на предположении, что периодическое воздействие вызывает периодический отклик. Однако именно этот постулат оспаривает новая теория хаотических колебаний.

Самовозбуждающиеся колебания - другой важный класс нелинейных явлений. Это колебательные движения, которые происходят в системах без периодических внешних воздействий или периодических сил. На рис. 1.8 показаны несколько примеров.

Рис. 1.8. Примеры самовозбуждакяцихся колебаний: а - сухое трение между массой и движущимся ремием; б - аэроупругие силы, действующие на тонкое крыло; в - отрицательное сопротивление в цепи с активным элементом.

В первом примере к колебаниям приводит трение, создаваемое относительным движением массы и движущегося ремня. Второй пример иллюстрирует целый класс аэроупругих колебаний, при которых стационарные колебания вызывает стационарный поток жидкости за твердым телом на упругой подвеске. В классическом примере из области электричества, показанном на рис. 1.9 и исследованном Ван дер Полем, в цепь включена электронная лампа.

Во всех этих примерах в системе присутствуют стационарный источник энергии и источник диссипации, или нелинейный демпфирующий механизм. В случае осциллятора Ван дер Поля источником энергии является постоянное напряжение.

Рис. 1.9. Схема цепи с вакуумной лампой, в которой происходят колебания на предельном цикле того же типа, который исследовал Ван дер Поль.

В математическую модель этой цепи источник энергии входит в виде отрицательного сопротивления:

Энергия может поступать в систему при малых амплитудах, но при увеличении амплитуды ее рост ограничивается нелинейным затуханием.

В случае маятника Фруда (см., например, ), подвод энергии осуществляется стационарным вращением оси. При малых колебаниях нелинейное трение играет роль отрицательного затухания; между тем при сильных колебаниях амплитуда колебаний ограничивается нелинейным членом

Колебательные движения таких систем часто называются предельными циклами. На рис. 1.10 показаны траектории осциллятора Ван дер Поля на фазовой плоскости. Малые колебания раскручиваются по спирали, приближаясь к замкнутой асимптотической траектории, а движения большой амплитуды стягиваются по спирали к тому же предельному циклу (см. рис. 1.10 и 1.11, где ).

При изучении подобных проблем часто возникают два вопроса. Какова амплитуда и частота колебаний на предельном цикле? При каких значениях параметров существуют устойчивые предельные циклы?

Рис. 1.10. Решение с предельным циклом для осциллятора Ван дер Поля, изображенное на фазовой плоскости.

Рис. 1.11. Релаксационные колебания осциллятора Ван дер Поля.

В случае уравнения Ван дер Поля удобно нормировать пространственную переменную на , а время - на так что уравнение принимает вид

где . При малых предельный цикл представляет собой окружность радиуса 2 на фазовой плоскости, т. е.

где через обозначены гармоники третьего и более высоких порядков. При больших движение приобретает вид релаксационных колебаний, показанных на рис. 1.11, с безразмерным периодом около 1.61 при

Более сложна задача с периодической силой в системе Ван дер Поля:

Поскольку эта система нелинейна, неприменим принцип суперпозиции свободных и вынужденных колебаний. Вместо этого возникающее периодическое движение захватывается на вынуждающей частоте, когда последняя близка к частоте предельного цикла. При слабом внешнем воздействии имеются три периодических решения, но лишь одно из них устойчиво (рис. 1.12). При больших значениях амплитуды силы существует только одно решение. В любом случае с увеличением расстройки - при фиксированном захваченное периодическое решение оказывается неустойчивым и становятся возможными другие типы движения.

Рис. 1.12. Амплитудные кривые для вынужденного движения осциллятора Ван дер Поля (1.2.9).

При больших отличиях вынуждающей и собственной частот в системе Ван дер Поля появляется новое явление - комбинационные колебания, иногда называемые почти периодическими или квазипериодическими решениями. Комбинационные колебания имеют вид

Когда частоты и несоизмеримы, т. е. - иррациональное число, решение называется квазипериодическим. Для уравнения Ван дер Поля , где - частота предельного цикла свободных колебаний (см., например, ).

Министерство образования республики Беларусь

Учреждение образования

Брестский государственный университет имени А.С. Пушкина

Физический факультет

Кафедра методики преподавания физики и ОТД

КУРСОВАЯРАБОТА

НЕЛИНЕЙНЫЕ КОЛЕБАНИЯ И СИНХРОНИЗАЦИЯ КОЛЕБАНИЙ

Выполнил студент группы ФИ-51

Пашкевич А.Я.

Научный руководитель:

к. ф.-м. н., доцент Ворсин Н.Н.

Брест, 2012

Введение

1.1 Линейные колебания в присутствии детерминированной внешней силы

2. Свободные колебания консервативных систем с нелинейными восстанавливающими силами

2.1 Свободные нелинейные колебания систем с затуханием и нелинейной восстанавливающей силой

2.2 Различные типы особенностей0

3. Незатухающие и релаксационные колебания

3.1 Качественный анализ уравнения Ван дер Поля

3.2 Связанные нелинейные колебания, регенеративный приемник с привязкой по фазе и принцип синхронизации

3.3 Основные уравнения

3.4 Колебания при большойрасстройке

3.5 Комбинированные колебания постоянной амплитуды

3.6 Электротехнические задачи, приводящие к уравнению Хилла

Заключение

Список литературы

Введение

Нет ничего удивительного в том, что физик должен уметь находить решение нелинейных задач, поскольку множество явлений, которые совершаются в мире вокруг него, управляются нелинейными зависимостями. В процессе развития математических наук трудности нелинейного анализа мешали формулировке представлений о нелинейных движениях, которые позволили бы глубже понять такие явления.

Если оглянуться назад на историю достижений науки, поражает тот факт, что основные усилия исследователей были сосредоточены лишь на изучении линейных систем и на линейных понятиях. Если в то же самое время бросить взгляд на окружающий нас мир, буквально на каждом шагу сталкиваешься с явлениями, которые нелинейны по своей природе. Линейные представления дают только поверхностное понимание многого из того, что встречается в природе. Чтобы сделать анализ более реалистичным, необходимо достичь более высокого уровня и большей легкости в понимании и использовании нелинейных представлений.

За последние годы получили развитие компьютерные методы анализа, и во многих случаях полагалось, что полученные решения могут дать лучшее понимание проявлений нелинейности. Вообще говоря, обнаружилось, что простой перебор численных решений ведет лишь к чуть большему пониманию нелинейных процессов, чем, например, наблюдение за самой природой, «перемалывающей» решения такой конкретной нелинейной задачи, как погода. Похоже, что наше понимание основывается не на уравнениях или их решениях, а, скорее, на фундаментальных и хорошо усвоенных представлениях. Обычно мы понимаем окружающее, только когда можем описать его посредством понятий, которые настолько просты, что они могут быть хорошо усвоены, и настолько широки, чтобы можно было оперировать ими, не обращаясь к конкретной ситуации. Перечень таких понятий обширен и включает, например, такие термины как резонанс, гистерезис, волны, обратная связь, граничные слои, турбулентность, ударные волны, деформация, погодные фронты, иммунитет, инфляция, депрессия и т. д. Большинство наиболее полезных процессов нелинейны по своему характеру, и наша неспособность описать точным математическим языком такие повседневные явления, как поток воды в водосточном желобе или закручивание дыма от сигареты, частично кроется в том, что мы не желали ранее погрузиться в нелинейную математику и понять ее.

Явление резонанса, как известно, часто встречается в живой материи. Следуя Винеру , Сент-Дьердьи предположил важность резонанса для устройства мышц. Оказывается, что субстанции с сильными резонансными свойствами обычно обладают исключительной способностью запасать как энергию, так и информацию, а такое аккумулирование, несомненно, имеет место в мышце.

Нелинейные колебания, случайные нелинейные колебания и связанные (синхронизированные по фазе) нелинейные колебания составляют самую суть явлений во многих областях науки и техники, например связи и энергетики; ритмические процессы имеют место в биологических и физиологических системах. Биофизик, метеоролог, геофизик, физик-атомщик, сейсмолог - все они имеют дело с нелинейными колебаниями, часто в той или иной форме синхронизированными по фазе. Например, инженер-энергетик занимается проблемой устойчивости синхронных машин, инженер-связист - неустойчивостью временной селекции или синхронизации, физиолог имеет дело с клонусом, невропатолог - с атаксией, метеоролог - с частотой колебаний атмосферного давления, кардиолог - с колебаниями, вызванными работой сердца, биолог - с колебаниями, обусловленными ходом биологических часов.

Основная цель дипломной работы - рассмотреть ряд задач теории нелинейных колебаний, связанных с такими основополагающими понятиями, как захватывание (или синхронизация), слежение, демодуляция, фазокогерентные системы связи. Будет сделана попытка дать обзор нелинейных задач, представляющих практический интерес, решения которых записаны в доступной форме. Обзор не является исчерпывающим, но он включает примеры задач, которые служат иллюстрацией основных представлений, необходимых для понимания нелинейных свойств систем фазовой синхронизации. Вопрос о существовании и единственности решений затрагивается лишь поверхностно; основное внимание уделяется методам получения решений.

Рассмотренный материал можно сгруппировать по трем основным темам. Первая тема включает изложение результатов теории линейных колебаний в системах с одной степенью свободы, имеющих постоянные параметры. Этот материал используется как справочный и для сопоставления с результатами, полученными из теории нелинейных колебаний. Вторая тема посвящена легко интегрируемым нелинейным системам, на которые не действуют внешние силы, зависящие от времени. Здесь посредством аппарата фазовой плоскости подробно изучаются свободные колебания нелинейных систем. Приводится краткое изложение теории Пуанкаре об особых точках дифференциальных уравнений первого порядка. Полезность понятия об особой точке иллюстрируется решением ряда физических задач. Наконец, третья тема охватывает колебания вынужденные, самоподдерживающиеся (автоколебания) и релаксационные нелинейные колебания. В частности, будет обсуждено применение теории Ван дер Поля к задачам синхронизации и слежения, а завершит главу рассмотрение уравнения Хилла.

1. Свободные колебания в линейных системах

Представляется ценным и интересным суммировать основные особенности линейных колебаний. Существует ряд причин, чтобы выполнить это здесь. Одна из наших принципиальных задач состоит в сопоставлении линейных и нелинейных методов исследования колебаний. Кроме того, сложилась практика применять, насколько это возможно, терминологию, используемую в линейных задачах, и в нелинейных. Наконец, полезно иметь сводку основных идей и формул линейной теории для удобства ссылок.

Пожалуй, самый простой пример задачи о линейных колебаниях дает простая электрическая схема, состоящая из индуктивности, соединенной последовательно с емкостью и резистором (рис. 1). Механический аналог, изображенный на рис. 1, состоит из тела массой,прикрепленного к пружине, развивающей усилие (называемое возвращающей силой), пропорциональное смещению тела. Для этой электрической системы, используя закон Кирхгофа, имеем

Если положить, что тело в механической системе движется в среде, которая оказывает сопротивление, пропорциональное скорости (вязкое трение), то уравнение движения для колебаний механической системы задается соотношением

По аналогии имеем, что; ; и, причем токявляется аналогом смещения.

Рис. 1.Линейная электрическая и механическая системы

Полагая пока, что внешняя сила и вводя обозначения

приводим (1.2) к виду

Поскольку, колебания, определяемые этим линейным однородным уравнением, называются свободными линейными колебаниями. Общее решение линейного уравнения с постоянными коэффициентами есть линейная комбинация двух экспоненциальных функций:

где и - произвольные константы, которые определяются начальными условиями, a и являются корнями характеристического уравнения

Таким образом, и заданы соотношениями

Если мы хотим представить решение (1.5) в вещественной форме, рассмотрим три случая, когда величина: а) вещественна, б) нуль, в) мнимая. Легко показать, что решения примут вид

где и - вещественные; и - произвольные постоянные, которые определяются заданием значений смещения (тока) и скорости в некоторый начальный момент.

Уравнение (1.8 - а) возникает на практике чаще всего. Как легко видеть из (1.3), этот случай имеет место, если коэффициент демпфирования мал по сравнению с. Уравнение (1.8 - а) в этом случае описывает такое колебательное движение, что каждые два последовательных максимума и смещения удовлетворяют соотношению

Теория нелинейных колебаний начала активно применяться и развиваться в течение последних 50 лет. Основополагающее значение в указанной гипотезе, в частности в концепции автоматических вибраций, принадлежит российскому ученому. М. Ляпунову и его сторонникам, работы которых смогли доказать необходимость использования нелинейных методов в решении сложных задач.

Замечание 1

Теория нелинейных колебаний (или нелинейного механического перемещения частиц среды) направлена на исследование нестабильных колебательных движений, описываемых в физике в виде дифференциальных уравнений.

Данная сфера в механике предоставляет более точное представление о характеристиках вибрационных движений автоматических систем. В итоге линейные формулы получаются путем упрощения нелинейных. Поэтому рассмотрение подобных колебаний дает возможность сделать только определенные заключения о свойствах кратковременных движений, которые могут быть лишь приближенными. Несмотря на это, теория нелинейных вибраций включает важные сведения о систематических решениях, появляющихся за рамками стабильности стационарного состояния.  

Способы проявления нелинейных эффектов

Нелинейные процессы могут формироваться посредством разнообразных методов. Классический и наглядный пример - это нелинейная спираль, в которой возобновляющая сила непосредственно зависит от начального растяжения. В случае параллельной нелинейности (одинаковый итог при растяжении и сжатии) формула движения частиц любого пространства принимает вид:

$\chi + 2 \gamma \chi + \alpha \chi + \beta \chi^3 = f (t)$

Если на систему периодически воздействует внешняя сила, то в классической гипотезе полагают, что и конечный отклик станет цикличным. Резонанс нелинейного явления при малой частоте отклика заключается в его соответствии с плотностью элементов концепции. При постоянном перемещении вынуждающей силы возникает амплитуда соответствующих частот, в котором вероятны разные значения сдвига частиц.

Существуют и другие комплексные решения, такие, как супергармонические и субгармонические вибрации. Если обязывающая сила имеет целостный вид, то другие колебания становятся более высокими. Гипотеза нелинейного резонанса основывается на предположении, что систематическое влияние предполагает создание периодического отклика.

Самоформирующиеся колебания представляют собой иной важный класс нелинейных процессов. Это вибрационные движения, которые формируются в системах без цикличных внешних периодических сил или воздействий.

Парадигма гипотезы нелинейных колебаний

Теория нелинейных движений стала заменой закона электрических вибраций Ван дер Поля. Последняя была генетически взаимосвязана с созданием принципов гипотезы радиотехнического прибора – лампового распределителя. В таком генераторе, функционирующем с определенным «трением» (т.е. будучи неконсервативной концепцией), постепенно появляются незатухающие колебательные перемещения. Это значит, что система включает источник внутренней энергии (или в систему систематически поступает питание извне). Однако в данном аспекте речь не идет о принужденных вибрациях. Ламповое устройство самостоятельно генерирует цикличные самовозбуждающиеся колебания.

Такие процессы возникают и функционируют за счет универсальной конструкции генератора, включающего, кроме колебательного усилитель и контура, связанных с ударной линией обратной связи.

Оставляя нерешенным вопрос о парадигме указанной гипотезы Ван дер Поля, возможно примерно описать концепцию, которая наблюдалась в трудах Мандельштама, Андронова и их последователей в конце 20-х гг.

Замечание 2

В качестве первого и основного элемента в работах ученых выступают «символические обобщения» – математические уравнения, которые определяют и описывают универсальные научные закономерности. В современной физике – это в основном дифференциальные формулы.

Ван дер Поль, в первую очередь, следовал уравнениям, описывающим принцип работы простого лампового распределителя:

$\frac {d^2x}{dt^2} - \mu (1 – 2x^2) \frac {dx}{dt} = x = 0$

Здесь $x$ – общий параметр (в случае генератора – сила и энергия тока), $t$ – определённый период времени, а нелинейный элемент $\frac{x}{dt}$ демонстрирует работу электронной лампы.

Значимую роль в истории теории нелинейных вибраций сыграл так называемый способ припасовывания (позднее названный законом структурно-линейной аппроксимации).

Собственно, в начале 1927 года Мандельштам смог более тщательно проанализировать стабильность колебательных движений, получаемых по указанному принципу. Метод припасовывания и на сегодняшний день широко применяется в гипотезе нелинейных колебаний.

Идеология теории нелинейных процессов

Идеология рассматриваемой гипотезы, прежде всего, характеризует особенности автоколебаний.

Понятия этих явлений были введены Л.В. Андроновым в научных статьях 1928–1929 гг. Фактически с механическими вибрациями имел дело и Ван дер Поль, описывая колебательные движения в ламповом генераторе, но он не так и не смог представить специального термина для них.

В работах Андронова «символическим обобщением» в итоге стало дифференциальное уравнение, по отношению к которому формула Ван дер Поля представляет собой только частный случай. Запись подобной эквивалентности выглядит следующим образом:

$\frac {d^2x}{dt^2} + \frac { 2dx}{dt + \omega^2 x} = f (\frac {x,dx}{dt})$

Идеология появляется вместе с парадигмой, но она распространяется значительно дальше. Идеологические процессы – это выражения и слова, значения которых определяются посредством аналогий, примеров и иллюстраций. Одним из главных признаков использования термина в идеологии является некое размывание его сути. Понятие условно выходит за границы собственной сферы применения.

1. Использованная выше в линейном анализе гипотеза о бесконечно малой величине возмущений не позволяет рассмотреть развитие действительных возму­щений. В линейной теории, как видно, амплитуда возмущений либо вообще не определена (на границе устойчивости), либо растет беспредельно (в зоне неус­тойчивости), что получается как следствие ее исходных положений. На самом деле при некоторой амплитуде возмущений становятся существенными нелиней­ные эффекты, которые предотвращают бесконечное увеличение амплитуды и при­водят к предельному циклу колебаний.

Нелинейность начинает проявляться лишь для возмущений с определенной (критической) амплитудой: при меньшей амплитуде согласно нелинейной теории колебания затухают, при большей - имеет место так называемая нелинейная неустойчивость (неустойчивость в большом, импульсная неустойчивость). Нелиней­ности колебательного процесса в РДТТ определяются нелинейностью процесса горения и волнового движения в камере, проявляющегося в росте кривизны волн давления, дисперсии возмущений и в возникновении ударных волн.

Несмотря на то, что линейные теории обеспечивают довольно полное пони­мание проблемы неустойчивости РДТТ, они не могут решить чрезвычайно важ­ного для практики вопроса о наиболее опасных для двигателя и для всего ЛА колебаниях большой амплитуды. Поэтому изучению таких нелинейных колебаний уделяется все большее и большее внимание. В настоящее время можно указать узкий круг уже решенных нелинейных задач.

2. Исходные уравнения . Рассмотрим в следующей постановке зада­чу о нелинейных акустических колебаниях для одномерного течения. Система не­линейных дифференциальных уравнений для такого случая может быть представ­лена в следующем виде:

уравнение сохранения массы газа

уравнение сохранения массы частиц

; (5.85)

уравне­ние сохранения количества движения

; (5.86)

уравне­ние сохранения энергии

где индекс «l » означает массовый расход на единицу длины; v - на единицу объема; остальные индексы и величины прежние.

3. Основные допущения . Для решения этих уравнений сделаем сле­дующие допущения:

Отсутствует догорание, т. Е = 0; Q = 0;

Обмен энергией представлен теплообменом между частицами и газом в КС;

Сечение канала заряда неизменно, т. е. F = const;

При z = 0 скорости газа и частиц раины нулю;

Для двухфазного потока в сопле предполагается постоянное отставание тя­желой фракции;

Режим работы сопла квазистационарный;

Характеристики переходного горения определяются функцией чувствительно­сти в виде

. (5.88)

следовательно, характеристика горения предполагает линейность;

Учитывается связь скорости горения с давлением, в отдельных случаях - со скоростью потока;

Частицы рассматривают только одного размера, причем с использованием линейного и нелинейного коэффициента сопротивления.

4. Результаты численного решения . Численные методы решения нелинейных задач устойчивости включают метод характеристик, метод «дискре­тизации» и др. В последнем случае решение задачи аппроксимируется в предпо­ложении удовлетворения нелинейности в конечном числе дискретных точек. Сис­тема представленных уравнений (5.84) ... (5.87) может решаться, например, методом характеристик. Такое решение, полученное Ф. Куликом, дает зависимость амплитуды возмущений от времени. Примеры результатов численных расчетов Ф. Кулика показаны на рис.7. Начальные условия задавались в виде стоячей волны основной частоты камеры. Начальное возмущение составляло равную часть первой и второй моды, но после трех циклов давление почти не содержало второй гармоники. Влияние связи с переходным горением в этом случае, очевид­но, играет решающую роль; функция чувствительности при принятых А и В по­казывает это в сильной степени для основной частоты и в слабой - для второй моды. Можно отметить также, что амплитуда давления начинает возрастать не сразу; более того наблюдается даже некоторое ее затухание после одного цикла. Это можно объяснить тем, что скорость горения только после нескольких циклов достигает значения, соответствующего возникшим возмущениям давления.