Критерий направления самопроизвольных процессов в изолированных системах. Второе начало термодинамики. Энтропия. Энергия Гиббса. Прогнозирование направления самопроизвольно протекающих процессов в изолированной и закрытой системах. и направление самопроиз

ПРОТЕКАНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ

Все самопроизвольные процессы всегда сопровождаются понижением энергии системы.

Таким образом, направление самопроизвольного протекания процесса в любых системах определяет более общий принцип – принцип минимума свободной энергии.

Для характеристики процессов, протекающих в закрытых системах, были введены новые термодинамические функции состояния: а) свободная энергия Гиббса

G = ∆H - T S (р , Т = const); (17)

б)свободная энергия Гельмгольца

F = ∆U - T S (V ,T = const). (18)

Энергии Гиббса иГельмгольца измеряются в единицахкДж/моль.

Свободная энергия это как раз та часть энергии, которая может быть превращена в работу (см. ур.10). Она равна максимальной работе, которую может совершить система G = - А макс .

В реальных условиях А макс никогда не достигается, так как часть энергии рассеивается в окружающую среду в виде тепла, излучения, тратится на преодоление трения и т.д., что и учитывается введением КПД.

Таким образом, 1) самопроизвольно могут протекать только те процессы, которые приводят к понижению свободной энергии системы; 2) система приходит в состояние равновесия, когда изменение свободной энергии становится равным нулю.

Вычисления изменений функции Гиббса (Гельмгольца), или свободной энергии, дают возможность сделать однозначные выводы о способности химических реакций к самопроизвольному протеканию в данных условиях.

Протекание самопроизвольных процессов всегда сопровождается уменьшением свободной энергии системы (DG < 0 или DF < 0).

Энергетические диаграммы, отвечающие термодинамически запрещенным, равновесным и самопроизвольным химическим процессам, представлены на рис.4.

ΔG , кДж/моль

Продукт ∆G > 0

термодинамически

Запрещенный процесс

Продукт

Исх. равновесие ∆G = 0

Продукт

G < 0

Самопроизвольный процесс

координата реакции Х

Рис. 4. Энергетические диаграммы термодинамически запрещенных, равновесных и самопроизвольных химических процессов

Условиями термодинамического равновесия в закрытой системе при различных условиях ведения процесса являются:

Изобарно-изотермические (р = const, T = const): ΔG = 0,

Изохорно-изотермические (V = const, T = const): ΔF = 0.

Таким образом, единственным критерием самопроизвольности химических процессов служит величина изменения свободной энергии Гиббса (или Гельмгольца), которая определяется двумя факторами: энтальпийным и энтропийным

G = ∆H - T S ;

ΔF = ∆U - T S .

Большинство химических процессов является результатом действия двух факторов: 1) стремление системы перейти в состояние с меньшей энергией, что возможно при объединении частиц или создании частиц, обладающих меньшим запасом внутренней энергии (или энтальпии); 2) стремление системы к достижению состояния с более высокой энтропией, что отвечает более беспорядочному расположению частиц.

При низких температурах, когда тепловое движение частиц замедляется, преобладает первая тенденция.

С ростом температуры энтропия возрастает (см.рис. 2 и 3) и начинает превалировать вторая тенденция, т.е. стремление к достижению такого состояния системы, которое характеризуется большей неупорядоченностью.

При очень высоких температурах не может существовать ни одно химическое соединение. Любые соединения в этих условиях переходят в газообразное состояние и распадаются (диссоциируют) на свободные атомы, а при температурах плазмы (Т > 10000 К) - на ионы, электроны и свободные радикалы, что соответствует наибольшей неупорядоченности системы, а следовательно, и максимальной энтропии.

Для определения, какой из факторов энтальпийный или энтропийный являются определяющими в данных условиях ведения процесса, производят сравнение абсолютных величин:

÷ ∆H ÷ > ÷ T S ÷ – определяющим является энтальпийный фактор,

÷ ∆H ÷ < ÷ T S ÷ - определяющим является энтропийный фактор.

В химии наиболее часто пользуются величиной энергии Гиббса, так как большинство химических и биологических процессов протекают в открытых (р = р атм) или закрытых сосудах при постоянном давлении (р ¹ р атм) и поэтому в дальнейшем, чтобы не повторяться в отношении величины ΔF , если это специально не оговорено, мы будем оперировать величиной ∆G .

Для определения направления химического процесса типа аА + вВ = сС + дД, протекающего в стандартных условиях, величину ΔG хр можно рассчитать по значениям ΔH 0 298хр и DS 0 298хр, используя ур.19. Если температура процесса Т ≠ 298 К, то расчет ведут по ур. 20.

G 0 298хр = ΔH 0 298хр - 298∙DS 0 298хр, (19)

G 0 Т хр ≈ ΔH 0 298хр - T DS 0 298хр. (20)

Можно воспользоваться и таблицами стандартных термодинамических функций образования веществ ΔG ° 298обр. В этом случае ΔG ° 298хр реакции рассчитывают аналогично ΔН ° 298хр:

G 0 298хр = [с∆G 0 298обр(С) + д∆G 0 298обр(Д) ] – [а∆G 0 298обр(А) + в∆G 0 298обр (В) ]. (21)

Таким образом, чтобы определить, возможен или нет химический процесс в данных условиях, необходимо определить, каким будет знак изменений энергий Гиббса или Гельмгольца.

Часто требуется определить температуру, называемую температурой инверсии, выше или ниже которой реакция меняет свое направление на обратное. Температура инверсии определяется из условия равновесия реакции ∆G хр = 0 .

G хр = ΔH хр - T DS хр = 0 (22)

Т инв = ΔH хр / DS хр. (23)

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Определите возможное направление самопроизвольного протекания процесса при t = 100°С. Рассчитать температуру инверсии.

Si (к) + SiO 2(к) = 2SiO (к)

Рассчитаем величину DG ° 298 этой реакции. Воспользуемся табличными данными

H 0 298 , кДж/моль 0 -912 -438

S 0 298 , Дж/моль∙К 19 42 27

Н 0 298 хр = = 36 кДж;

S 0 298 хр = = -7 Дж/К;

G ° хр = ∆H 0 298 хр - T S 0 298 хр =36 - 373×(-7)×10 -3 = 38,6 кДж.

Видно, что величина ∆G ° хр положительна, и при 373 К реакция в прямом направлении протекать не может. Следовательно, SiO 2 устойчив в стандартных условиях.

Для того, чтобы узнать возможен ли в принципе переход SiO 2 в SiO при каких – либо других температурах, надо рассчитать температуру инверсии, при которой система находится в состоянии термодинамического равновесия, т.е. в условиях, когда ∆ G = 0.

Т инв = ∆ H ° 298 хр /∆ S ° 298 хр = 36/(-7.10 -3)= -5143 К.

Отрицательной температуры в шкале абсолютных температур не существует и, следовательно, ни при каких условиях переход двуокиси кремния в окись кремния невозможен.

Fe 3 O 4(к) + 4H 2(г) = 3Fe (к) + 4H 2 O (г)

Н ° 298 обр, кДж/моль -1118 0 0 -241,8

В соответствии со следствием из закона Гесса изменение энтальпии процесса равно:

Н ° 298 хр = 4∆Н ° 298 обр (Н 2 О) – ∆Н ° 298 обр (Fe 3 O 4) = 4(-241,8) - (-1118) = 150,8 кДж

Изменение энтальпии реакции в данном случае рассчитано на 3 моль железа, т.е. на 3 моль ∙ 56 г/моль = 168 г.

Изменение энтальпии при получении 1кг железа определяется из соотношения:

168 г Fe - 150,8 кДж;

1000 г Fe - Х кДж;

Отсюда Х = 897 кДж.

Определить верхний предел температуры, при которой может протекать процесс образования пероксида бария по реакции:

2BaO (к) + O 2(г) = 2BaO 2(к)

Изменение энтальпии и энтропии реакции образования пероксида бария имеют следующие значения:

Н ° 298 хр = 2∆Н ° 298 обр (ВаО 2) - (2∆Н ° 298 обр (ВаО) + ∆Н ° 298 обр (О 2))

Н ° 298 хр = -634,7∙2 - (-553,9∙2 + 0) = -161,6 кДж

S ° 298 хр = 2S ° 298 обр (ВаО 2) – (2S ° 298 обр (ВаО) + S ° 298 обр (О 2))


Лекция 3


  1. Второй закон термодинамики. Энтропия.

  2. Свойства энтропии. Энтропия – критерий направления самопроизвольного процесса в изолированной системе.

  3. Расчет изменения энтропии при фазовом переходе , нагревании (охлаждении), при протекании химической реакции.

  4. Термодинамические потенциалы и направление самопроизвольного процесса.
1. Второй закон термодинамики. Энтропия

Первый закон термодинамики позволяет рассчитать тепловые эффекты различных процессов и работу, совершаемую системой, но ничего не говорит о направлении самопроизвольного протекания процесса.

Второй закон термодинамики устанавливает возможность, направление и предел протекания самопроизвольных процессов. С его помощью можно предсказать направление процесса, не прибегая к дополнительному эксперименту, и определить необходимое изменение условий, позволяющее провести процесс в нужном направлении.

Почему многие экзотермические реакции, сопровождающиеся выделением теплоты, не могут протекать самопроизвольно? И почему все-таки протекают эндотермические процессы, подобные испарению? Почему невозможно построить тепловую машину, КПД которой был бы равен 1? На эти вопросы отвечает II закон термодинамики.

Но прежде, чем перейти к изложению сути II закона термодинамики, необходимо дать характеристику самопроизвольным процессам.

Процессы самопроизвольные и несамопроизвольные,

обратимые и необратимые

Все процессы, протекающие в природе, могут быть разделены на самопроизвольные и несамопроизвольные.

Самопроизвольным, или положительным , называется процесс, который совершается в системе без вмешательства со стороны окружающей среды. Например, переход теплоты от горячего тела к холодному, плавление льда при t > 0 С.
Свойства самопроизвольных процессов

1) Скорость и движущая сила самопроизвольных процессов измерима (достаточно велика).

2) Самопроизвольные процессы приближают систему к состоянию равновесия, из которого она самопроизвольно выйти не может.

3) Самопроизвольные процессы термодинамически необратимы, т.е. после их протекания систему и окружающую среду одновременно нельзя вернуть в первоначальное состояние: систему можно вернуть в прежнее состояние, затратив работу, но при этом произойдут изменения в окружающей среде (например, изменится энергия окружающих тел).

4) При протекании самопроизвольного процесса совершается работа А н/о (работа необратимого процесса).

Если при осуществлении процесса система может вернуться в исходное состояние, не оставляя видимых изменений в окружающей среде, такой процесс является термодинамически обратимым . Термодинамическое понятие обратимости не совпадает со значением этого термина в химической кинетике. Обратимой в кинетике считают реакцию, результирующая скорость которой определяется разностью скоростей протекания ее в прямом и обратном направлениях, причем на величину этой разности не накладывается каких-либо ограничений.

Для термодинамической обратимости требуется, чтобы реакция проходила в условиях, бесконечно близких к равновесию, когда скорости прямого и обратного процессов различаются на бесконечно малую величину.

Свойства обратимых процессов

1) Обратимые процессы идут с бесконечно малой скоростью через бесконечно большое число стадий, движущая сила их бесконечно мала.

2) При протекании обратимого процесса совершается максимально возможная работа:

А обр. = А max ,

А обр. > А н/о

В природе и технике протекают только необратимые процессы. Но любой реальный процесс можно провести в условиях, близких к обратимому процессу. Сравнивая реальный процесс с обратимым, можно в каждом конкретном случае указать пути повышения его эффективности.

Наилучшей моделью обратимого процесса может служить бесконечно медленно протекающий процесс.

Выводы :

1) работа обратимо протекающих процессов максимальна, работа реальных процессов всегда меньше;

2) чем выше степень необратимости процесса, тем меньше работа, производимая системой.

Если I закон термодинамики применим к любым термодинамическим процессам в равной мере, то II закон имеет различное выражение при применении его к обратимым и необратимым процессам.

Формулировки и математическое выражение

II закона термодинамики

Второй закон термодинамики, также как и первый, является эмпирическим. Он не имеет теоретических доказательств и обобщает опытные факты, касающиеся процессов взаимоперехода теплоты и работы. Он имеет несколько формулировок (постулатов), которые эквивалентны и вытекают одна из другой.

Некоторые из формулировок наглядны и непосредственно связаны с опытом, другие более абстрактны, но являются более удобными для математического развития теории. Все они выражают одно и то же содержание, подмечая существование самопроизвольных и несамопроизвольных процессов и различие между ними.

Постулат Клаузиуса : теплота не может сама собой переходить от менее нагретого тела к более нагретому, тогда как обратный переход протекает самопроизвольно .

Постулат Томсона : никакая совокупность процессов не может привести к превращению тепла только в работу, тогда как превращение работы в теплоту может быть единственным результатом процесса .

Постулат Оствальда : невозможно построить вечный двигатель второго рода, т.е. двигатель, который производил бы работу только за счет поглощения теплоты из окружающей среды без передачи части теплоты теплоприемнику .

Согласно второму закону термодинамики, даже при обратимом процессе (в котором совершается максимальная работа) в работу может перейти только часть теплоты процесса, другая часть в виде теплоты передается от более нагретых к более холодным частям системы, т.е. КПД всегда меньше единицы. Это явление называется рассеянием (диссипацией) энергии.

Теплота и работа неравноценны . В случае превращения работы в теплоту происходит превращение согласованного, направленного движения микрочастиц системы в беспорядочное, хаотичное движение. Если же происходит превращение теплоты в работу, хаотичное движение должно перейти в направленное. Естественно, что возникновение порядка из беспорядка более затруднительно.

Пример : если ударять молотом по наковальне, то можно обнаружить, что он при этом нагревается, т.е. механическая работа переходит в теплоту. Обратный процесс можно только представить: можно нагреть молот до белого каления, но подпрыгивать от наковальни он не будет.

Вывод: должна существовать какая-то функция состояния системы, характеризующая рассеянную энергию, недоступную для совершения работы.

Эта функция введена Клаузиусом в 1865 г. и названа энтропией S .

Энтропия – это функция состояния, изменение которой равнов приведенной теплоте, сообщенной системе в обратимом процессе:

Выражения (1) являются математической записью II закона термодинамики для обратимых процессов .

В общем виде II закон термодинамики записывается

Знак «=» относится к обратимым процессам, «>» – к необратимым.

Необходимо отметить, что изменение энтропии одинаково как при обратимом, так и при необратимом процессах , но во втором случае происходит большее обесценивание энергии, т.е. переход энергии в состояние, не способное производить работу.

Свойства энтропии. Энтропия – критерий направления

самопроизвольного процесса в изолированной системе

1. Энтропия – функция состояния системы , т.е. ее изменение S зависит только от энтропии исходного и конечного состояний системы.

2. Энтропия характеризует вероятность реализации системы. Чем больше энтропия, тем больше способов реализации системы. Например, энтропия возрастает при распаде молекул ВМС на отдельные фрагменты, при переходе вещества из твердого в жидкое и газообразное состояние при постоянной температуре, при нагревании вещества (так как усиливается тепловое движение молекул и возрастает беспорядок). Количественно эта взаимосвязь выражается формулой Больцмана

S = k lnW ,

Где W термодинамическая вероятность; k – константа Больцмана, k = 1,3810 -23 Дж/К.

Термодинамическая вероятность W – это число микросостояний системы, с помощью которых реализуется данное макросостояние. Макросостояние системы характеризуется параметрами состояния (p , V , T , хим. состав). Но термодинамическая система состоит из огромного числа микрочастиц, имеющих определенную энергию, скорость, направление движения, поскольку находятся в непрерывном хаотичном движении. При равновесии макросостояние не изменяется, т.е. макросвойства (p , V , T , хим. состав) остаются постоянными, а микросвойства (положение частицы в объеме системы, энергия, скорость ее) непрерывно меняются. Наблюдаемое макросостояние осуществляется разными микросостояниями, количество которых характеризует термодинамическая вероятность. В отличие от математической вероятности, равной отношению числа благоприятных событий к общему числу возможных событий, а поэтому всегда меньшей единицы, термодинамическая вероятность может быть очень большой величиной.

3. Энтропия – критерий направления самопроизвольного процесса в изолированной системе.

нагревании (охлаждении), при протекании химической реакции

Для реальных (необратимых) процессов II закон термодинамики записывается в идее неравенства, что затрудняет расчет изменения энтропии S при их протекании. Но энтропия – функция состояния системы, и ее изменение не зависит от пути проведения процесса. Поэтому для расчета S при протекании различных процессов воспользуемся уравнением II закона для обратимых процессов:

Изменение энтропии при фазовых превращениях

Фазовое превращение (фазовый переход) – процесс, связанный с изменением агрегатного состояния вещества.

Характерной особенностью этих процессов является то, что они протекают при постоянной температуре – температуре фазового перехода Т ф.п. .

Тогда, согласно II закону термодинамики

Где Q ф.п . – тепловой эффект фазового перехода.

При р = const теплота равна изменению энтальпии:

Изменение энтропии при нагревании (охлаждении).

Применим уравнение (1) к изобарному процессу (р = const ).

Где С р – молярная изобарная теплоемкость вещества, Дж/(мольK).

Проинтегрируем последнее уравнение в определенных пределах (при изменении температуры от Т 1 до Т 2):

Если в исследуемом температурном интервале теплоемкость мало зависит от температуры, т.е. можно использовать среднюю изобарную теплоемкость , то решение уравнения (2) имеет вид:

Изменение энтропии в ходе химической реакции (при Т = const ).

Так как энтропия – функция состояния, то ее изменение в ходе химической реакции можно рассчитать по уравнению:

Где S j , S i – энтропии продуктов реакции и исходных веществ соответственно при температуре реакции; j , i – стехиометрические коэффициенты.

В справочной литературе приведены стандартные энтропии веществ при температуре 298 К.

Если реакция протекает при температуре, отличной от 298 К, то энтропию вещества рассчитывают по уравнению (3), приняв для удобства за Т 1 температуру 298, а за Т 2 – температуру реакции:

Где S – изменение энтропии вещества при нагревании (или охлаждении) вещества от 298 К до температуры Т .

После подстановки (5) в формулу (4) для каждого участника реакции получим формулу для расчета изменения энтропии в ходе реакции, протекающей при температуре Т :

II закон термодинамики:


или
.

Объединенное математическое выражение:

Рассмотрим соответствующие процессы.

1. Изобарно-изотермический процесс (p , T = const ).

Уравнение (6) запишется (из математики: любую константу можно внести под знак дифференциала, а сумма дифференциалов равна дифференциалу от суммы )

Где H TS = G –свободная энергия Гиббса. При p , T = const изменение энергии Гиббса связано с выполнением полезной работы:

В обратимо протекающем процессе
. Тогда

Таким образом , свободная энергия Гиббса является изобарно-изотермическим потенциалом , так как ее уменьшение характеризует максимальную работу этого процесса.

Если единственным видом работы является работа расширения (сжатия), т.е.
, то в необратимом, а, следовательно, самопроизвольно протекающем процессе

Неравенства (7), (8) являются условием самопроизвольного протекания процесса при постоянстве соответствующих параметров : самопроизвольно могут протекать только те процессы, которые приводят к понижению свободной энергии системы; система приходит в состояние равновесия, когда свободная энергия достигает минимального значения.

Критерии оценки направления самопроизвольного протекания процессов


Критерий

Оценки


Ограничения

Условие

Равновесия


Условие протекания самопроизвольного процесса

Энтропия S

Изолированная

Система

ΔS = 0,

S = S max


ΔS > 0

Изобарно-изотермический потенциал G

р,Т = const

ΔG = 0,

G = G min


ΔG

Изохорно-изотермический потенциал F

V, Т = const

ΔF = 0,

F = F min


ΔF

Изменение соответствующего термодинамического потенциала в ходе какого-либо процесса, протекающего при температуре Т , вычисляют по уравнению Гиббса-Гельмгольца:

– для изобарно-изотермического процесса

,
G T = H T T S T
(9)

– для изохорно-изотермического процесса

.
F T = U T T S T
(10)

H и U – изменение полной энергии в системе при р = const и V = const соответственно; G и F – энергия, которая связана с производством полезной работы; T S – энергия, которая перешла в энергию хаотичного (теплового) движения частиц, вследствие чего она уже не может перейти в работу. Поэтому G и F называют еще свободной энергией, а T S – связанной энергией.
Легко установить связь между G и F . Вычитая из уравнения (9) уравнение (10), и учитывая, что U = Н – nRT , получим:

Термодинамические потенциалы могут играть роль характеристических функций. Это значит, что с помощью их производных можно выразить свойства системы, необходимые для ее характеристики.

Например, изобарно-изотермический потенциал является функцией двух параметров – давления и температуры, т.е.

Запишем dG в виде суммы частных производных

Получаем:


Изменение энтропии однозначно определяет направление и предел самопроизвольного протекания процесса лишь для наиболее простых систем – изолированных: если в результате расчета окажется, что DS > 0, процесс пойдет самопроизвольно, при DS = 0 – состояние равновесия, если DS < 0, процесс самопроизвольно протекать не будет.

На практике приходится иметь дело преимущественно с системами, взаимодействующими с окружающей средой. В качестве критерия оценки направления самопроизвольных процессов в таких системах используются термодинамические потенциалы.

Термодинамическим потенциалом называют функцию состояния, убыль которой при постоянстве определенных параметров равна максимальной полезной работе.

Наибольшее значение имеют два основных термодинамических потенциала: энергия Гельмгольца F (T , V ) и энергия Гиббса G (T , p ). В скобках указаны параметры, функциями которых являются термодинамические потенциалы.

Чтобы получить представление о термодинамических потенциалах, воспользуемся объединенным математическим выражением первого и второго законов термодинамики.

или .

Рассмотрим соответствующие процессы.

И з о б а р н о – и з о т е р м и ч е с к и й п р о ц е с с (p, T = const ).

Уравнение (1.23) запишется

,

,

где H – TS = G –свободная энергия Гиббса. При p, T = const изменение энергии Гиббса связано с выполнением полезной работы:

.

В обратимо протекающем процессе . Тогда

,

.

Таким образом, свободная энергия Гиббса является изобарно-изотермическим потенциалом, так как ее уменьшение характеризует максимальную работу этого процесса.

Если единственным видом работы является работа расширения (сжатия), т.е. , то в необратимом, а, следовательно, самопроизвольно протекающем процессе

. (1.24)

И з о х о р н о – и з о т е р м и ч е с к и й п р о ц е с с (V, T = const ).

Уравнение (1.23) примет вид

,

где U – TS = F – свободная энергия Гельмгольца. При V, T = const изменение энергии Гельмгольца связано с выполнением полезной работы:

.

В обратимо протекающем процессе

,

.

Таким образом, свободная энергия Гельмгольца является изохорно-изотермическим потенциалом.

Если , то в самопроизвольно протекающем процессе

. (1.25)

Неравенства (1.24), (1.25) являются условием самопроизвольного протекания процесса при постоянстве соответствующих параметров: самопроизвольно могут протекать только те процессы, которые приводят к понижению свободной энергии системы; система приходит в состояние равновесия, когда свободная энергия достигает минимального значения (рис. 1.7.).

F
F min

Процессы, которые сопровождаются увеличением термодинамических потенциалов, протекают лишь при совершении работы извне над системой.

Изменение соответствующего термодинамического потенциала в ходе какого-либо процесса, протекающего при температуре Т , вычисляют по уравнению Гиббса-Гельмгольца:

– для изобарно-изотермического процесса

DG = DH – T DS , (1.26)

– для изохорно-изотермического процесса

DF = DU – T DS . (1.27)

Основываясь на уравнении Гиббса-Гельмгольца (1.26), (1.27), можно оценить вклад энтальпийного и энтропийного факторов в величину ΔG (или ΔF ) и сделать некоторые обобщающие заключения о возможности самопроизвольного протекания химических процессов.

1. Экзотермические реакции, ΔH < 0.

Если ΔS > 0, то ΔG всегда отрицательно; экзотермические реакции, сопровождающиеся увеличением энтропии, всегда протекают самопроизвольно.

Если ΔS < 0, реакция будет идти самопроизвольно при DH > T DS (низкие температуры).

2. Эндотермические реакции, ΔH > 0.

Если ΔS > 0, процесс будет самопроизвольным при DH < T DS (высокие температуры).

Если ΔS < 0, то ΔG всегда положительно; самопроизвольное протекание эндотермических реакций, сопровождающихся уменьшением энтропии, невозможно.

Термодинамические потенциалы могут играть роль характеристических функций. Это значит, что с помощью их производных можно выразить свойства системы, необходимые для ее характеристики.

Многие процессы протекают без подвода энергии от внешнего источника. Такие процессы называют самопроизвольными .

Примерами самопроизвольных процессов могут служить падение камня с высоты, течение воды под уклон, переход теплоты от более нагретого тела к менее нагретому.

Человеческий опыт показал, что самопроизвольные процессы в обратном направлении не могут протекать самопроизвольно, т.е. самопроизвольно не потечет вода в гору, камень не полетит вверх, а теплота не перейдет от холодного тела к нагретому.

(хотя с точки зрения первого закона термодинамики, одинаково правдоподобны как процесс перехода тепла от горячего тела к холодному, так и обратный процесс, т.е. переход от тепла от холодного тела к горячему, ибо и в том и в другом случаях соблюдается закон сохранения и превращения энергии)

Многие химические реакции также протекают самопроизвольно, например , образование ржавчины на металлах, реакция натрия с водой, растворение соли в воде и др.

Чтобы понимать химические процессы и управлять ими, необходимо знать ответ на вопрос: каковы движущие силы и критерии самопроизвольных процессов?

Одной из движущих сил химической реакции является рассмотренное нами ранее уменьшение энтальпии системы, т.е. экзотермический тепловой эффект реакц ии.

Как показывает опыт, большинство экзотермических реакций (?Н <0) протекают самопроизвольно. – Почему?

Однако условие?Н <0 не может быть критерием! Самопроизвольного течения реакций, так как существуют самопроизвольные эндотермические химические реакции, у которых?Н >0, например, взаимодействие метана с водяным паром при высокой температуре.

Следовательно, кроме уменьшение энтальпии системы (энтальпийного фактора) имеется другая движущая сила самопроизвольного процесса.

Такой силой является стремление частиц (молекул, ионов, атомов) к хаотичному движению, а системы – к переходу от более упорядоченного состояния к менее упорядоченному.

Например, представим пространство, в которое помещено вещество, в виде шахматной доски, а само вещество – в виде зерен. Каждая клетка доски соответствует определенному положению и уровню энергии частиц. Если частицы распределяются по всему пространству, то вещество находится в газовом состоянии; если частицы займут только небольшую часть пространства, то вещество перейдет в конденсированное состояние. Все высыпанные зерна распределяются на доске более или менее равномерно. На каждой клетке доски окажется определенное число зерен. Положение зерен после каждого рассыпания соответствует микросостоянию системы, которое можно определить как мгновенный снимок, фиксирующий расположение частиц в пространстве. Каждый раз мы получаем систему в одном и том же макросостоянии. Число подобных микросостояний, удовлетворяющих ожидаемому макросостоянию (при достаточно большом количестве частиц) очень велико.

Например , коробка с ячейками, в которой находятся шары: так в 9 ячейках находятся 4 шара – это модель макросистемы . Шары по ячейкам можно разложить 126 различными способами, каждый из которых является микросостоянием.

Число микросостояний, посредством которых реализуется данное макро состояние, связано с термодинамической вероятностью W . Энтропия определяется термодинамической вероятностью : она тем выше, чем больше способов реализации макросостояния .

Поэтому считают, что энтропия – мера неупорядоченности системы.

Математически связь энтропии с числом микросостояний установил Л. Больцман в конце 19 века, выразив ее уравнением:

S = k * ln W ,

где W - термодинамическая вероятность данного состояния системы при определенном запасе внутренней энергии U и объеме V ;

k постоянная Больцмана, равная 1,38*10 -23 Дж/К.

Пример с шарами, конечно, очень нагляден, но он коварен, так как на основании его интуитивно под упорядоченностью системы иногда понимают расположение частиц в пространстве .

Однако, в действительности под термодинамическим состоянием подразумевается, главным образом, расположение частиц (например, молекул) по возможным уровням энергии (каждый вид движения –колебательное, вращательное, поступательное- характеризуется своим уровнем энергии).

Энтропия также зависит от массы частиц и их геометрического строения.

Кристаллы имеют наименьшую энтропию (так их частицы могут колебаться только около некоторого состояния равновесия), а газы – наибольшую, так как для их частиц возможны все три вида движения. S T

Всякому веществу можно приписать определенное абсолютное значение энтропии.

Конечно, энтропии веществ обычно не рассчитывают на основании уравнения Больцмана. Их определяют по уравнению классической термодинамики с учетом теплоемкости данного вещества и теплот фазовых переходов.

Значение энтропии различных веществ при 298 К и давлении 1 атм. (S 0 298) являются табличными данными.

На основании данных о стандартной энтропии веществ можно рассчитать изменение энтропии различных химических процессов. Поскольку энтропия является функцией состояния , то ее изменение не зависит от пути процесса и равно разности энтропий продуктов реакций и исходных веществ:

?S 0 реакц .= ? ? i S 0 - ? ? jS 0

Во многих случаях изменение энтропии процесса можно оценить качественно:

· Так, энтропия всегда увеличивается при переходе из конденсированного состояния (твердого или жидкого) в парообразное.

· Энтропия всегда возрастает при растворении твердого или жидкого вещества, причем, чем больше степень диссоциации, тем заметнее увеличивается энтропия. При растворении газов, напротив, энтропия уменьшается.

· Чем сложнее состав вещества, тем больше энтропия. Например, для оксидов марганца МnO , Mn 2 O 3, Mn 3 O 4 энтропия равна соответственно 61,50; 110,5; 154,8 кДЖ/моль*К.

· В химических реакциях энтропия возрастает, если в результате их увеличивается количество газообразных веществ. Например, в реакции термического разложения карбоната кальция:

СаСО 3(т) = СаО (т) + СО 2(г)

Второе начало (закон) термодинамики регламентирует принципиальную возможность протекания различных процессов. В середине 19 века этот закон был сформулирован в виде нескольких постулатов. Наиболее известные из них следующие:

· Невозможно осуществить перенос тепла от более холодного тела к более горячему, не затрачивая на это работу .

(Р. Клаузиус)

и с использованием понятия энтропии:

· В изолированных системах самопроизвольно идут процессы, при которых происходит увеличение энтропии. (? S изолир. >0)

Всякая изолированная система самопроизвольно стремиться принять состояние, характеризующееся максимальной термодинамической вероятностью.

На основании уравнения Больцмана можно показать, что любой необратимый процесс, самопроизвольно протекающий в изолированной системе, характеризуется увеличением энтропии. Пусть в изолированной системе находятся два химически не взаимодействующих газа, например гелий и неон, при одинаковых условиях, разделенные перегородкой. В этом состоянии термодинамическая вероятность системы w 1 . При удалении перегородки газы начинают самопроизвольно диффундировать друг в друга до тех пор, пока молекулы каждого газа равномерно не распределятся по всему объему. В конечном состоянии термодинамическая вероятность w 2 . Система самопроизвольно перешла из менее вероятного состояния в более вероятное (w 2 > w 1). Энергетический обмен системы с внешней средой отсутствует, следовательно, единственная причина протекания этого процесса - увеличение энтропии.

Другими словами, процессы протекают самопроизвольно лишь в сторону менее упорядоченного состояния, т.е. нарастания беспорядка. Именно поэтому испарение жидкости, растворение соли в воде или смешение газов происходит самопроизвольно, а вместе с тем обратные процессы без обмена энергией с окружающей средой невозможны.

Следовательно, увеличение энтропии является критерием самопроизвольного протекания процессов только в изолированных системах, т.е. не обменивающихся энергией с внешней средой, а это довольно редкий случай. В открытых и замкнутых системах, кроме изменения энтропии, на направление процесса влияет еще и изменение энтальпии.

Вопрос 5. Энергия Гиббса и Гельмгольца. Критерий самопроизвольного протекания процессов.

Какие же процессы идут самопроизвольно в неизолированных системах? При взаимодействии водорода с кислородом самопроизвольно образуется вода:

2Н 2(г) +О 2(г) = 2Н 2 О (г)

В этой реакции энтропия уменьшается, но выделяется большое количество теплоты (? S <0, ?Н <0), т.е. самопроизвольному протеканию процесса способствует уменьшение энтальпии.

Самопроизвольно происходит и растворение хлорида аммония в воде:

NH 4 Cl (тв) + aq = NH 4 + (р) + Cl - (р)

Этот процесс сопровождается понижением температуры (поглощение теплоты) и увеличением энтропии (? S > 0, ?Н > 0), причем главную роль играет последний фактор.

В термодинамике вводится новая функция, связывающая две предыдущие величины – энергия Гиббса.(G )

G = H – TS

Основная ценность этой функции заключается в том, что ее изменение при постоянной температуре и давлении определяет самопроизвольность процессов.

? G = ( ? H – T ? S ) <0

· В классической термодинамике под энтропией понимают такое свойство системы, изменение которого при обратимом процессе численно равно отношению теплоты к температуре протекания процесса:

? S = Q/T ; T ? S=Q

· В термодинамике обратимым называют такой процесс, который проводится бесконечно медленно и так, чтобы система находилась все время практически в состоянии равновесия.

Таким образом, величина ? G характеризует ту часть изменения внутренней энергии, которая может быть превращена в полезную работу.

При условии постоянства объема пользуются термодинамической функцией, которая называется Энергией Гельмгольца (F ):

F = U – T ? S

В изохорном процессе полезная работа определяется изменением энергии Гельмгольца, а условием самопроизвольности процесса является ее уменьшение ? F <0.

В химии обычно пользуются энергией Гиббса, поскольку чаще всего химические реакции проводят при постоянном (атмосферном) давлении.

Итак, в неизолированной системе процесс преимущественно происходит самопроизвольно, если ему соответствует уменьшение энергии Гиббса. (? G <0.)

При ? G =0 состояние системы соответствует равновесию.

При ? G > 0 -процесс преимущественно не протекает в прямом направлении

Анализ уравнения ? G =( ? H – T ? S ) показывает, что знак величины ? G , а значит, термодинамическая возможность самопроизвольного протекания реакции зависят от двух факторов: энтальпийного (энергетического) и энтропийного . С одной стороны, система стремится занять прийти к минимальному уровню энергии, выделив часть ее в виде теплоты или работы (? H <0). С другой стороны, система стремится занять наиболее вероятное состояние, характеризующееся максимумом молекулярного беспорядка, т.е. максимумом энтропии (? S >0). В этом случае энтальпийный и энтропийный факторы действуют в направлении, благоприятствующему протеканию реакции.

Рассмотрим варианты:

а) ? H <0; ? S >0; в этом случае? G <0 при всех значениях температуры, процесс термодинамически возможен при любой температуре.

б) ? H <0; ? S <0; в этом случае? G <0 при Т< , т.е. при реакция термодинамически возможна при при сравнительно низкотемпературном режиме;

в) ? H >0; ? S >0; в этом случае? G <0 при Т> , процесс возможен при высоких температурах;

г) ? H >0; ? S <0; в этом случае? G <0 - оба фактора действуют в неблагоприятном направлении, реакция термодинамически невозможна при любых значениях температур.

Первый способ расчета аналогичен методу оценки изменения энтальпии реакции по табулированным энтальпиям образования различных веществ. В таблицах сведены и величины ? G 0 обр.298 и точно также принято, что для простых веществ ? G 0 обр.298 =0

? G 0 реакц. = ?? i ? G 0 обр.прод. - ?? j ? G 0 обр.исх.

i j

Второй способ основан на расчете сначала величин ? H реакц.. и ? S реакц. для данного процесса, а потом исходя из них – величины ? G 0 реакц по формуле:

? G 0 реакц = ? H 0 реакц. – 298 ? S 0 реакц.

Данный способ хорош тем, что позволяет оценить, как изменится знак ? G 0 реакц при изменении температуры.

Хотя энтальпия и энтропия веществ зависят от температуры, но для реакции изменение этих величин незначительно, поэтому приближенно считают, что в некотором интервале температур ? H реакц.. и ? S реакц величины практически постоянные.

Для простых веществ, находящихся в термодинамически устойчивых состояниях ? G 0 =0.

В гл. 9, посвященной энтропии, установлено, что критерием протекания самопроизвольного процесса в изолированной системе является возрастание энтропии. На практике изолированные системы встречаются не часто. Здесь следует сделать одно замечание. Если ограничиться нашей планетой, то она представляет собой достаточно хорошо изолированную систему, и большинство процессов на планете можно рассматривать как протекающими в изолированной системе. Поэтому самопроизвольные процессы идут в сторону возрастания энтропии всей планеты, и именно возрастанием энтропии планеты и характеризуются все самопроизвольные процессы на Земле. Можно, конечно, использовать принцип возрастания энтропии Земли в качестве критерия направленности конкретного рассматриваемого процесса. Однако это очень неудобно, так как придется учитывать энтропию планеты в целом.

На практике чаще имеют дело с закрытыми системами. При анализе самопроизвольных процессов в закрытых системах также можно применить принцип возрастания энтропии.

Рассмотрим реакцию, протекающую в закрытой системе. Закрытая система представляет собой реактор, окруженный термостатом.

Будем полагать, что вся система «реактор + термостат» отделена от окружающей среды изолирующей оболочкой. Как известно, энтропия любой изолированной системы по мере протекания самопроизвольного процесса может только расти. В рассматриваемом случае энтропия представляет собой сумму двух слагаемых - энтропии реакционной системы внутри реактора (А,) и энтропии термостата (А 2). Тогда для изменения энтропии системы в целом можно записать

Предположим, что реакция протекает в условиях постоянного давления и постоянной температуры с выделением теплоты. Постоянство температуры реактора поддерживается хорошей теплопроводностью стенок реактора и большой тепловой емкостью термостата. Тогда теплота, выделяемая в ходе реакции (-АЯ,), поступает из реактора к термостату и

Подставляя величину AS 2 в предыдущее уравнение, получаем

Таким образом, применяя к закрытой системе вместе с термостатом общий принцип возрастания энтропии в изолированной системе при протекания в ней необратимого процесса, получаем простой критерий, который определяет протекание необратимого процесс в закрытой системе (нижний индекс 1 опущен для общности):

В равновесии функция Гиббса закрытой системы достигает минимума, в котором

Выражение (11.25) представляет собой условие равновесия любых закрытых термодинамических систем. Отметим, что стремление системы к равновесию, описываемое уравнением типа (11.24), нельзя объяснять через существование некой «движущей силы». Никаких «движущих сил», аналогичных силам в механике Ньютона, в химических процессах не существует. Химическая система вместе с окружением стремится занять наиболее вероятное состояние из всех возможных, что математически и описывает энтропия полной системы, стремящаяся к максимуму. Таким образом, изотермическое изменение функции Гиббса для закрытой системы, взятое с обратным знаком и поделенное на температуру (-АG/T) - выражение (10.47), представляет собой изменение энтропии полной изолированной системы («термодинамическая система + окружение»), в качестве которой может рассматриваться созданная человеком изолированная система («закрытая система + термостат»), «закрытая система + планета Земля» или «закрытая система + вся Вселенная». Заметим, что во всех обратимых процессах, протекающих при постоянных значениях Тир, изменение фундаментальных функций и энтропии системы вместе с окружением равно нулю на любой стадии процесса.

Итак, в закрытой системе самопроизвольное протекание химического процесса при постоянных значениях температуры и давления, обязательно сопровождается уменьшением функции Гиббса. Реакции, характеризующиеся возрастанием функции Гиббса, самопроизвольно не происходят. Если процесс сопровождается возрастанием функции Гиббса, то его можно осуществить, в большинстве случаев, с совершением работы. Действительно, проведем процесс обратимым путем, но в обратном направлении с уменьшением функции Гиббса. В этом случае будет произведена работа в окружающей среде, которая может быть запасена в виде потенциальной энергии. Если теперь попытаться провести процесс в исходном направлении с возрастанием функции Гиббса, то в обратимом процессе необходимо будет использовать запасенную потенциальную энергию. Следовательно, без совершения работы обратимый процесс, происходящий с возрастанием функции Гиббса, осуществить невозможно.

Тем не менее, можно провести реакцию, в которой происходит возрастание функции Гиббса, и без совершения работы. Но тогда необходимо обеспечить сопряжение невыгодной реакции (AG > 0) с выгодной (AG

Такие процессы очень часто встречаются в биохимических системах, в которых в роли энергодонорной реакции участвует реакция гидролиза аденозинтрифосфорной кислоты (АТФ). Благодаря сопряжению протекают многие химические и биохимические реакции. Тем не менее, механизм этого сопряжения не столь прост, как это могло бы следовать из вышеприведенной схемы. Отметим, что реакции, в которых участвуют реагенты А и С, независимы. Поэтому протекание реакции С -» D никак не может повлиять на реакцию А -> В. Иногда можно встретить утверждение, что такое сопряжение способно увеличить константы равновесия невыгодных реакций и увеличивать выход продуктов в невыгодных реакциях. Действительно, сложив формально одну реакцию А -» В с некоторым числом (п ) реакций С -> D можно получить сколь угодно большую по величине константу равновесия реакции А + пС -» В + nD . Однако равновесное состояние системы не может зависеть от формы записи химических уравнений, несмотря на суммарное отрицательное изменение функции Гиббса. Поэтому, в сложных системах величины констант равновесия в большинстве случаев не позволяют без проведения расчетов судить о равновесном состоянии. Необходимо иметь в виду, что константы равновесия определяются только структурой участвующих в реакции веществ, и они не зависят от присутствия или реакций других соединений. Простое сложение реакций, несмотря на значительное увеличение констант равновесия, не приводит к увеличению выхода продуктов в равновесной ситуации .

Положение спасает участие в процессе промежуточных продуктов, например,

Но участие промежуточных продуктов не меняет равновесный состав и выход продукта В (предполагается, что равновесное количество промежуточного продукта АС мало). Увеличение количества продукта В можно ожидать только на начальных стадиях процесса, далеких от равновесного состояния благодаря достаточно быстрым реакциям с участием промежуточных продуктов .

Литература

  • 1. Степин Б.Д. Применение международной системы единиц физических величин в химии. - М.: Высшая школа, 1990.
  • 2. Карапетъянц М.Х. Химическая термодинамика. - М.: Химия, 1975.
  • 3. N. Bazhin. The Essence of ATP Coupling. International Scholarly Research Network, ISRN Biochemistry, v. 2012, Article ID 827604, doi: 10.5402/2012/827604