Углекислый газ. Свойства, получение, применение. Получение CO2 Углекислый газ в лаборатории можно получить взаимодействием

ОПРЕДЕЛЕНИЕ

Углекислый газ (двуокись углерода, угольный ангидрид, диоксид углерода) – оксид углерода (IV).

Формула – СО 2 . Молярная масса – 44 г/моль.

Химические свойства углекислого газа

Углекислый газ относится к классу кислотных оксидов, т.е. при взаимодействии с водой он образует кислоту, которая называется угольная. Угольная кислота химически неустойчива и в момент образования сразу же распадается на составляющие, т.е. реакция взаимодействия углекислого газа с водой носит обратимый характер:

CO 2 + H 2 O ↔ CO 2 ×H 2 O(solution) ↔ H 2 CO 3 .

При нагревании углекислый газ распадается на угарный газ и кислород:

2CO 2 = 2CO + O 2 .

Как и для всех кислотных оксидов, для углекислого газа характерны реакции взаимодействия с основными оксидами (образованными только активными металлами) и основаниями:

CaO + CO 2 = CaCO 3 ;

Al 2 O 3 + 3CO 2 = Al 2 (CO 3) 3 ;

CO 2 + NaOH (dilute) = NaHCO 3 ;

CO 2 + 2NaOH (conc) = Na 2 CO 3 + H 2 O.

Углекислый газ не поддерживает горения, в нем горят только активные металлы:

CO 2 + 2Mg = C + 2MgO (t);

CO 2 + 2Ca = C + 2CaO (t).

Углекислый газ вступает в реакции взаимодействия с простыми веществами, такими как водород и углерод:

CO 2 + 4H 2 = CH 4 + 2H 2 O (t, kat = Cu 2 O);

CO 2 + C = 2CO (t).

При взаимодействии углекислого газа с пероксидами активных металлов образуются карбонаты и выделяется кислород:

2CO 2 + 2Na 2 O 2 = 2Na 2 CO 3 + O 2 .

Качественной реакцией на углекислый газ является реакция его взаимодействия с известковой водой (молоком), т.е. с гидроксидом кальция, в которой образуется осадок белого цвета – карбонат кальция:

CO 2 + Ca(OH) 2 = CaCO 3 ↓ + H 2 O.

Физические свойства углекислого газа

Углекислый газ – газообразное вещество без цвета и запаха. Тяжелее воздуха. Термически устойчив. При сжатии и охлаждении легко переходит в жидкое и твердое состояния. Углекислый газ в твердом агрегатном состоянии носит название «сухой лед» и легко возгоняется при комнатной температуре. Углекислый газ плохо растворим в воде, частично реагирует с ней. Плотность – 1,977 г/л.

Получение и применение углекислого газа

Выделяют промышленные и лабораторные способы получения углекислого газа. Так, в промышленности его получают обжигом известняка (1), а в лаборатории – действием сильных кислот на соли угольной кислоты (2):

CaCO 3 = CaO + CO 2 (t) (1);

CaCO 3 + 2HCl = CaCl 2 + CO 2 + H 2 O (2).

Углекислый газ используется в пищевой (газирование лимонада), химической (регулировка температур при производстве синтетических волокон), металлургической (защита окружающей среды, например, осаждение бурого газа) и других отраслях промышленности.

Примеры решения задач

ПРИМЕР 1

Задание Какой объем углекислого газа выделится при действии 200 г 10%-го раствора азотной кислоты на 90 г карбоната кальция, содержащего 8% примесей, нерастворимых в кислоте?
Решение Молярные массы азотной кислоты и карбоната кальция, рассчитанные с использованием таблицы химических элементов Д.И. Менделеева – 63 и 100 г/моль, соответственно.

Запишем уравнение растворения известняка в азотной кислоте:

CaCO 3 + 2HNO 3 → Ca(NO 3) 2 + CO 2 + H 2 O.

ω(CaCO 3) cl = 100% — ω admixture = 100% — 8% = 92% = 0,92.

Тогда, масса чистого карбоната кальция:

m(CaCO 3) cl = m limestone × ω(CaCO 3) cl / 100%;

m(CaCO 3) cl = 90 × 92 / 100% = 82,8 г.

Количество вещества карбоната кальция равно:

n(CaCO 3) = m(CaCO 3) cl / M(CaCO 3);

n(CaCO 3) = 82,8 / 100 = 0,83 моль.

Масса азотной кислоты в растворе будет равна:

m(HNO 3) = m(HNO 3) solution × ω(HNO 3) / 100%;

m(HNO 3) = 200 × 10 / 100% = 20 г.

Количество вещества азотной кислоты кальция равно:

n(HNO 3) = m(HNO 3) / M(HNO 3);

n(HNO 3) = 20 / 63 = 0,32 моль.

Сравнивая количества веществ, вступивших в реакцию, определяем, что азотная кислота находится в недостатке, следовательно дальнейшие расчеты производим по азотной кислоте. Согласно уравнению реакции n(HNO 3): n(CO 2) = 2:1, следовательно n(CO 2) = 1/2×n(HNO 3) = 0,16 моль. Тогда, объем углекислого газа будет равен:

V(CO 2) = n(CO 2)×V m ;

V(CO 2) = 0,16×22,4 = 3,58 г.

Ответ Объем углекислого газа — 3,58 г.

Углекислый газ Углекислый газ

Углекислый газ (двуокись углерода, диоксид углерода) занимает важнейшее место среди технических газов, он широко используется практически во всех отраслях промышленности и агропромышленного комплекса. На долю СО 2 приходится 10% всего рынка технических газов, что ставит этот продукт в один ряд с основными продуктами разделения воздуха.

Направления использования углекислого газа в различных агрегатных состояниях многообразны – пищевая промышленность, сварочные газы и смеси, пожаротушение и т.д. Всё больше находит применение и его твердая фаза – сухой лёд, от заморозки, сухих брикетов до очистки поверхностей (бластинга).

Получение

Извне углекислоту получить нельзя по причине того, что в атмосфере ее почти не содержится. Животные и человек получают её при полном расщеплении пищи, поскольку белки, жиры, углеводы, построенные на углеродной основе, при сжигании с помощью кислорода в тканях образуют углекислый газ (СО 2).

В промышленности углекислый газ получают из печных газов, из продуктов разложения природных карбонатов (известняк, доломит). В пищевых целях используется газ, образующийся при спиртовом брожении. Также углекислый газ получают на установках разделения воздуха, как побочный продукт получения чистого кислорода, азота и аргона. В лабораторных условиях небольшие количества СО 2 получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например, мрамора, мела или соды с соляной кислотой. Побочные источники производства СО 2 - продукты горения; брожение; производство жидкого аммиака; установки риформинга; производство этанола; природные источники.

При получении углекислого газа в промышленных масштабах используют три основные группы сырья.

Группа 1 - источники сырья, из которых можно производить чистый СО 2 без специального оборудования для повышения его концентрации:

  • газы химических и нефтехимических производств с содержанием 98-99% СО 2 ;
  • газы спиртового брожения на пивоваренных, спиртовых и гидролизных заводах с 98-99% СО 2 ;
  • газы из естественных источников с 92-99% СО 2 .

Группа 2 - источники сырья, использование которых обеспечивает получение чистого СО 2:

  • газы малораспространенных химических производств с содержанием 80-95% СО 2 .

Группа 3 - источники сырья, использование которых дает возможность производить чистый СО 2 только с помощью специального оборудования:

  • газовые смеси, состоящие в основном из азота и углекислого газа (продукты сгорания углеродсодержащих веществ с содержанием 8-20% СО 2 ;
  • отходящие газы известковых и цементных заводов с 30-40% СО 2 ;
  • колошниковые газы доменных печей с 21-23% СО 2 ;
  • состоящие в основном из метана и углекислого газа и содержащие значительные примеси других газов (биогаз и свалочный газ из биореакторов с 30-45% СО 2 ;
  • попутные газы при добыче природного газа и нефти с содержанием 20-40% СО 2 .

Применение

По ряду оценок, потребление СО2 на мировом рынке превышает 20 млн. метрических тонн в год. Столь высокий уровень потребления формируется под влиянием требований пищевой промышленности и нефтепромысловых предприятий, технологий газирования напитков и других промышленных нужд, например, снижения показателя Ph установок водоочистки, проблем металлургии (в том числе использования сварочного газа) и т.д.

Потребление углекислого газа неуклонно растет, поскольку расширяются сферы его применения, которые охватывают задачи от промышленного назначения до пищевого производства – консервация продуктов, в машиностроении от сварочного производства и приготовления защитных сварочных смесей до очистки поверхностей деталей гранулами «сухого льда», в сельском хозяйстве для подкормки растений, в газовой и нефтяной промышленности при пожаротушении.

Основные области применения СО 2:

  • в машиностроении и строительстве (для сварки и прочее);
  • для холодной посадки частей машин;
  • в процессах тонкой заточки;
  • для электросварки, основанной на принципе защиты расплавленного металла от вредного воздействия атмосферного воздуха;
  • в металлургии;
  • продувка углекислым газом литейных форм;
  • при производстве алюминия и других легкоокисляющихся металлов;
  • в сельском хозяйстве для создания искусственного дождя;
  • в экологии заменяет сильнодействующие минеральные кислоты для нейтрализации щелочной отбросной воды;
  • в изготовлении противопожарных средств;
  • применяется в углекислотных огнетушителях в качестве огнетушащего вещества, эффективно останавливает процесс горения;
  • в парфюмерии при изготовлении духов;
  • в горнодобывающей промышленности;
  • при методе беспламенного взрыва горных пород;
  • в пищевой промышленности;
  • используется как консервант и обозначается на упаковке кодом Е290;
  • в качестве разрыхлителя теста;
  • для производства газированных напитков;

Газирование напитков может происходить одним из двух путей:

  1. При производстве популярных сладких и минеральных вод используется механический способ газирования, который предполагает насыщение углекислым газом какой-либо жидкости. Для этого необходимо специальное оборудование (сифоны, акратофоры, сатураторы) и баллоны со сжатым углекислым газом.
  2. При химическом способе газирования углекислоту получают в процессе брожения. Таким образом получается шампанское вино, пиво, хлебный квас. Углекислота в содовых водах получается в результате реакции соды с кислотой, сопровождающейся бурным выделением углекислого газа.

СО 2 как сварочный газ

Начиная с 1960 года широкое распространение получила сварка легированных и углеродистых сталей в среде углекислого газа (СО 2), отвечающего требованиям ГОСТ 8050. В последнее время все большее распространение в сварочных технологиях машиностроительных предприятий находит применение сварочных газовых смесей аргона и гелия, при этом многие наиболее востребованные газовые смеси включают в себя небольшое количество активных газов (СО 2 или О 2), необходимых для стабилизации сварочной дуги. Однако при сварке углеродистых и низколегированных сталей основных структурных классов на российских предприятиях основным защитным газом по-прежнему продолжает оставаться углекислый газ СО 2 , что объясняется физическими свойствами этого защитного газа и его доступностью.

Как получить и собрать углекислый газ? Доказать опытным путем наличие этого газа и получил лучший ответ

Ответ от Мария И[активный]
кусочек мрамора + соляная кислота - в пробирке. CaCO3 + 2HCl =CaCl2 + CO2 + H2O




А вообще в лабораториях получают CO2 в аппаратах Киппа или приборе для получения газов

Ответ от Галина Галина [гуру]
В промышленности получают из печных газов, из продуктов разложения природных карбонатов (известняк, доломит) . Смесь газов промывают раствором карбоната калия, который поглощает углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании разлагается, высвобождая углекислоту. При промышленном производстве закачивается в баллоны. В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора с соляной кислотой.


Ответ от Арсен Ясупиев [активный]
Кусочек мрамора + соляная кислота - в пробирке. CaCO3 + 2HCl =CaCl2 + CO2 + H2O
В эту пробирку газоотводную трубку, другой конец трубки в другую пробирку, в которой будешь собирать углекислый газ.
Доказательство: 1)известковая вода Са (ОН) 2, тогда идет реакция:
CO2 + Ca(OH)2 =CaCO3 + H2O . Карбонат кальция выпадает в осадок (белый) поэтому качественная реакция: помутнение известковой воды.
2)Углекислый газ хорошо растворяется в воде, при растворении образуется угольная кислота, поэтому, если его пропустить через воду, а потом в воду добавить лакмус, то лакмус из фиолетового станет красным (т. к. кислая среда)
А вообще в лабораториях получают CO2 в аппаратах Киппа или приборе для получения газов


Ответ от 3 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Как получить и собрать углекислый газ? Доказать опытным путем наличие этого газа

Углекислый газ, имея универсальные свойства, используется в промышленности, медицине, сельском хозяйстве. Сегодня CO2 – это удобрение в сельском хозяйстве, медицинский инструмент, регулятор температуры и источник новой энергии.

Получение диоксида углерода в промышленности методологически разнообразно. Он находится в дымовых отходах, выпускаемых в атмосферу ТЭЦ и электростанциями, получается при брожении спирта и выступает как продукт реакции с природными карбонатами.

Индустрия получения двуокиси углерода широка. Газ можно абсорбировать несколькими способами из одного источника. Во всех случаях это поэтапный процесс очистки от примесей (для достижения требований ГОСТа) и достижения нужной консистенции, агрегатного состояния.

Получение газообразной двуокиси углерода

Газообразный CO2 извлекают из промышленных (нефтяных) дымов путем адсорбции моноэтаноламина (коммерчески выгодно) и карбонатом калия (редко). Принцип сбора частиц углерода одинаков для обоих веществ. Они направляются по трубопроводу к отходам и собирают в себя углекислый газ. После сбора, насыщенные углекислотой газы направляются на очистку.

В специальных емкостях происходит реакция в при повышенной температуре или заниженном давлении. В процессе высвобождается чистая углекислота и продукты распада (аммиак и другие).

Установка добычи углекислоты

Схематически процесс выглядит так:

  1. Отходящий дым смешивается с адсорбентами (газообразным карбонатом калия или моноэтаноламином);
  2. Накопившие в себе двуокись углерода газы поступают в специальный газгольдер для очистки;
  3. В реакции с высокой температурой или низким давлением происходит отделение углекислого газа от адсорбента.

Химическая промышленность:

  • Участвует в синтезе искусственных химикатов;
  • Регулирует температуру в реакциях;
  • Нейтрализует щелочи;
  • Очищает ткани животных и растений;
  • Может восстанавливаться до метана.

Металлургия:

  • Осаждение отходящего дыма;
  • Регулирует направления течения воды при отводе шахт;
  • Некоторые лазеры используют CO2 в качестве источника энергии (неон).

Производство бумаги:

  • Регулирует водородный показатель в древесной массе или целлюлозе;
  • Усиливает в мощности производственные машины.

Особую роль в промышленной и смежных индустриях играет сухой лед. Он применяется как:

  • Источник охлаждения в морозильных камерах при перевозках;
  • Охлаждение при затвердевании сплавов;
  • Очистка сухим льдом оборудования (криобластинг).

Рыба, замороженная сухим льдом.

Применение в других сферах деятельности

Человек также использует углекислоту в других областях деятельности и в быту. Доступность диоксида обуславливает его широкую распространенность, а свойства – востребованность даже среди обывателей.

Где еще применяется углекислота:

  • При сварке. Защищает металл от нагрева и окисления, обтекая электрическую дугу.
  • В сельском хозяйстве. Углекислый газ в купе с солнечным светом – идеальный способ удобрить любые культуры. Распыление газа в парнике или теплице увеличивает урожайность в 2-3 раза;
  • В медицине служит для создания атмосферы, близкой к реальной, при проведении искусственных операций на органах. Он применяется как стимулятор для восстановления дыхания пациента и при введении его в наркоз;
  • Фармацевтика. Создает идеальную среду для синтеза химии и низкотемпературной транспортировки вод;
  • Приборы и оборудование. Охлаждает оборудование и агрегаты без разбора на модули, выступает как абразивный элемент прочистки;
  • Защита окружающей среды. Регулирует показатель водорода в стоках;
  • Пищевая промышленность. Используется как консервант и разрыхлитель теста. Добавляется в напитки, делая их газированными;
  • Для создания давления в пневматическом оружии.

Применение углекислого газа особенно востребовано в системах пожаротушения. Он заполняется в углекислотные газовые огнетушители и при возгорании позволяет изолировать очаг пожара от источника кислорода. Горение не может долго продолжаться без подпитки воздухом, а газификация углекислотой не даст ему проникнуть к огню.

Получаемый в малом количестве от спиртового брожения используется как способ газировки напитков. Он также уберегает муку, сухофрукты, арахис от насекомых, не влияя на качество и скорость их порчи.

Углекислый газ – первоклассная среда для разведения цветов, подкормки овощей и подводных растений. Он ускоряет фотосинтез и улучшает обменные процессы в растительных клетках. Главное – имеет доступную цену даже для обывателей.

Диоксид углерода может применяться и в криодеструкции, в качестве заморозки. Он сжигает холодом поверхность бородавок и родинок, заставляя их отваливаться, но не оставлять шрамов от скальпеля и швов.

Заключение

Углекислый газ – простое и распространенное по всей планете вещество, играющее практическую функцию в ключевых отраслях деятельности. Без него не обходится промышленность, медицина, пищевая отрасль и даже простой человеческий быт.

С недавних пор CO2 применяется как основа для производства источника топлива (метанола). Популярность набирает способ использования в качестве возобновляемого геотермального источника энергии, способного увеличить производство электроэнергии и .

Описание способов получения и производства промышленных газов (азот, аргон, водород, гелий, кислород, пропан, углекислота).

Получение и производство промышленных газов.

В настоящее время основным способом получения атмосферных промышленных газов – кислорода, азота, аргона является разделение воздуха. Различают три способа разделения воздуха — криогенный, адсорбционный и мембранный.

Криогенное разделение воздуха

Атмосферный осушенный воздух представляет собой смесь, содержащую по объему кислород 21 % и азот 78 %, аргон 0,9% и другие инертные газы, углекислый газ, водяной пар и пр. Для получения технически чистых атмосферных газов воздух подвергают глубокому охлаждению и сжижают (температура кипения жидкого воздуха при атмосферном давлении -194,5° С.)

Процесс выглядит так: воздух, засасываемый многоступенчатым компрессором, проходит сначала через воздушный фильтр, где очищается от пыли, проходит влагоотделитель, где отделяется вода, конденсирующаяся при сжатии воздуха, и водяной холодильник, охлаждающий воздух и отнимающий тепло, образующееся при сжатии. Для поглощения углекислоты из воздуха включается аппарат — декарбонизатор, заполняемый водным раствором едкого натра. Полное удаление влаги и углекислоты из воздуха имеет существенное значение, так как замерзающие при низких температурах вода и углекислота забивают трубопроводы и приходится останавливать установку для оттаивания и продувки.

Пройдя осушительную батарею, сжатый воздух поступает в так называемый детандер, где происходит резкое расширение и соответственно его охлаждение и сжижение. Полученный жидкий воздух подвергают дробной перегонке или ректификации в ректификационных колоннах. При постепенном испарении жидкого воздуха сначала выпаривается преимущественно азот, а остающаяся жидкость всё более обогащается кислородом. Повторяя подобный процесс многократно на ректификационных тарелках воздухоразделительных колонн, получают жидкий кислород, азот и аргон нужной чистоты. Возможность успешной ректификации основывается на довольно значительной разности (около 13°) температур кипения жидких азота (-196° С) и кислорода (-183° С). Несколько сложнее отделить аргон от кислорода (-185° С). Далее разделенные газы отводятся для накопления в специальные криогенные емкости, из которых поступают для собственного использования либо на продажу.

Криогенный способ разделения воздуха позволяет получить газы самого высокого качества – кислород до 99.9%, аргон и азот до 99, 9995%. Производительность может составлять до 70000 м.куб./час.

Метод короткоцикловой адсорбции (КЦА).

Криогенное разделение воздуха при всех его качественных параметрах является довольно дорогостоящим способом получения промышленных газов. Адсорбционный метод разделения воздуха, основанный на избирательном поглощении того или иного газа адсорбентами, является некриогенным способом, и широкое применение получил из-за следующих преимуществ:

  • высокая разделительная способность по адсорбируемым компонентам в зависимости от выбора адсорбента;
  • быстрый пуск и остановка по сравнению с криогенными установками;
  • большая гибкость установок, т.е. возможность быстрого изменения режима работы, производительности и чистоты в зависимости от потребности;
  • автоматическое регулирование режима;
  • возможность дистанционного управления;
  • низкие энергетические затраты по сравнению с криогенными блоками;
  • простое аппаратурное оформление;
  • низкие затраты на обслуживание;
  • низкая стоимость установок по сравнению с криогенными технологиями;

Адсорбционный способ используется для получения азота и кислорода, так как он обеспечивает при низкой себестоимости отличные параметры качества.

Принцип получения азота при помощи КЦА прост, но эффективен. Воздух подается в адсорбер — углеродные молекулярные сита при повышенном давлении и температуре внешней среды. В ходе процесса кислород (О 2) поглощается адсорбентом, в то время как азот (N 2) проходит через аппарат. Адсорбент поглощает газ до состояния равновесия между адсорбцией и десорбцией, после чего адсорбент необходимо регенерировать, т.е. удалить с поверхности адсорбента поглощённые компоненты. Это можно сделать либо путём повышения температуры, либо путём сброса давления. Обычно в короткоцикловой адсорбции используют регенерацию посредством сброса давления. Небольшая длительность циклов адсорбции и регенерации, обычно в пределах нескольких минут, и дала собственно название процесса — «короткоцикловая адсорбция». Чистота азота по этой технологии 99,999%.

В установках для производства кислорода используется известный факт, что азот адсорбируетсяалюмосиликатными молекулярными ситами существенно быстрее, чем кислород. Для отделения азота от кислорода воздух сначала сжимают, а затем пропускают через адсорбер, получая на выходе относительно чистый кислород. Чистота кислорода как продукта, получаемого по этой технологии, составляет до 95 %. Основной загрязняющей его примесью является главным образом аргон. Регенерацию адсорбента проводят при атмосферном давлении или вакууме.

Установки короткоцикловой адсорбции обычно полностью собираются и испытываются на заводе-изготовителе, т.е. поступают к потребителю в состоянии полной заводской готовности, что обеспечивает быстрый монтаж, и имеют диапазон производительности от 10 до 6000 нм 3/ч.

Мембранная технология

Промышленное использование технологии мембранного разделения газов началось в 70-х годах и произвело настоящую революцию в индустрии разделения газов. Вплоть до сегодняшних дней эта технология активно развивается и получает все большее распространения благодаря своей высокой экономической эффективности. В случаях, когда не требуется очень чистый газ, в основном азот, при сравнительно больших объемах потребления, эта технология практически полностью вытеснила альтернативные способы получения газов — криогенный и адсорбционный. При производстве азота чистоте до 99.9% и производительностью до 5000 нм³/ч мембранные установки оказываются существенно выгоднее остальных. Устройство современных мембранных газоразделительных и воздухоразделительных установок исключительно надежно. В первую очередь это обеспечивается тем, что в них нет никаких подвижных элементов, поэтому механические поломки почти исключены. Современная газоразделительная мембрана, основной элемент установки, представляет собой уже не плоскую мембрану или пленку, а полое волокно. Половолоконная мембрана состоит из пористого полимерного волокна с нанесенным на его внешнюю поверхность газоразделительным слоем. Суть работы мембранной установки заключается в селективной проницаемости материала мембраны различными компонентами газа. Разделение воздуха с использованием селективных мембран основано на том, что молекулы компонентов воздуха имеют разную проницаемость через полимерные мембраны. Воздух фильтруется, сжимается до желаемого давления, осушается и затем подается через мембранный модуль. Более «быстрые» молекулы кислорода и аргона проходят через мембрану и удаляются наружу. Чем через большее количество модулей проходит воздух, тем больше становится концентрация азота N 2 . Наиболее эффективно по затратам получать азот с содержанием основного вещества 93-99,5%.

Ниже приведены графики по выбору применения тех или иных видов получения промышленных газов в зависимости от объемов потребления и необходимой чистоты.

Получение гелия

Гелий — прозрачный газ, без вкуса и запаха, следующий по величине атомного веса после водорода элемент. Он абсолютно инертен, т. е. не вступает ни в какие реакции. Из всех веществ гелий имеет самую низкую температуру кипения -269°С. Жидкий гелий — самая холодная жидкость. «Замерзает» гелий при — 272° С. Эта температура всего на один градус выше температуры абсолютного нуля. В промышленных масштабах гелий можно получать двумя способами – либо из недр земли, либо разделением воздуха. Это газ на Земле встречается мало: 1 м 3 воздуха содержит всего 5,2 см 3 гелия, т.е. всего 0,00052%., а каждый килограмм земного материала — 0,003 мг гелия. По распространенности же во Вселенной гелий занимает второе место после водорода: на долю гелия приходится около 23% космической массы.

На Земле гелий постоянно образуется при распаде урана, тория и других радиоактивных элементов. Гелий накапливается в свободных газовых скоплениях недр и в нефти; такие месторождения достигают промышленного масштабов. Максимальные концентрации гелия (10-13%) выявлены в свободных газовых скоплениях и газах урановых рудников и (20-25%) в газах, спонтанно выделяющихся из подземных вод. Чем древнее возраст газоносных осадочных пород и чем выше в них содержание радиоактивных элементов, тем больше гелия в составе природных газов.

Добыча гелия в промышленных масштабах производится из природных и нефтяных газов как углеводородного, так и азотного состава. По качеству сырья гелиевые месторождения подразделяются: на богатые (содержание Не > 0,5% по объему); рядовые (0,10-0,50) и бедные (<0,10). Месторождения таких газов имеются в России, США, Канаде, Китае, Алжире, Польше и Катаре.

Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой сжижения. После того как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%. Крупнейший производитель гелия в Европе – Оренбургский гелиевый завод (10 млн литров жидкого гелий в год).

При получении гелия путем разделения воздуха крупные воздухоразделительные установки (1000 – 3000 т кислорода в день) оборудуют специальными концентраторами и аппаратами колонного типа, которые выделяют и накапливают смеси криптона и ксенона в кислороде, неона и гелия в азоте. Неочищенные смеси затем перерабатываются для получения чистого продукта. Чистота гелия может доходить до 99,9999%. Одним из крупнейших производителей гелия из воздуха является компания «Айсблик».

Получение углекислого газа

Различают следующие промышленные способы получения углекислого газа:

— путем рекуперации двуокиси углерода из газов брожения на спиртовых и пивоваренных заводах;
— путем рекуперации двуокиси углерода из отбросных газов различных производственных процессов;

— путем добычи из подземных естественных источников;
из дымовых газов и продуктов сгорания;
— путем производства двуокиси углерода методом прямого сжигания газообразного или жидкого топлива.

Соответственно, в зависимости от концентрации углекислого газа источники его условно можно разделить на три группы.

Первую группу составляют источники сырья, из которых можно производить чистый диоксид углерода без специального оборудования для повышения его концентрации. В эту группу входят:

а) газы химических и нефтехимических производств (производства аммиака, водорода и др. продуктов) с содержанием 98-99 % СО 2 ; б) газы спиртового брожения на пивоваренных, спиртовых и гидролизных заводах с 98-99 % СО 2 ; в) газы из естественных источников с 92-99 % СО 2 .

Вторую группу формируют источники сырья, использование которых обеспечивает получение чистого диоксида углерода методом фракционной конденсации.

К этой группе относят газы некоторых химических производств с содержанием 80-95 % СО 2 .

Установки рекуперации CO 2 предназначены для извлечения углекислоты из газов первой и второй группы. Газы, получаемые в процессах брожения при производстве спирта или пива, представляют собой практически чистый углекислый газ, содержащий водяные пары и следы органических соединений (сернистый ангидрид, сероводород, сивушные масла и альдегиды), легко отмываемые водой. Содержание двуокиси углерода в т.н. экспанзерных газах зависит от типа технологических процессов химических производств и может составлять до 99,9 %. Остальной объем занимают пары воды и низкокипящие примеси, преимущественно водород. Для доведения двуокиси углерода до пищевого качества (99,995 % СО 2 и 0,0005% О 2) эти установки оснащаются системой ректификационной (дистилляционной) очистки.

В третью группу включены источники сырья, использование которых даёт возможность производить чистый диоксид углерода только с помощью специального оборудования. В эту группу входят источники:

а) состоящие в основном из азота и диоксида углерода (продукты сгорания углеродсодержащих веществ, например, природного газа, жидкого топлива, кокса в котельных, газо-поршневых и газотурбинных установках с содержанием 8-20 % СО 2 ; от-

ходящие газы известковых и цементных заводов с 30-40 % СО 2 ; колошниковые газы доменных печей с 21-23 % СО 2);

б) состоящие в основном из метана и диоксида углерода и содержащие значительные примеси других газов (биогаз и свалочный газ из биореакторов с 30-45 % СО2; сопутствующие газы при добыче природного газа и нефти с содержанием 20-40 % СО 2).

При использовании источников сырья третьей группы чаще всего применяются углекислотные станции абсорбционно-десорбционного типа с жидкими химическими абсорбентами. Это - один из основных промышленных способов получения чистого СО 2 . Наиболее распространенным сырьем для производства двуокиси углерода являются дымовые газы, а природный газ считается оптимальным источником сырья. При сжигании природного газа в дыме отсутствуют соединения серы и механические примеси.

Типичная схема получения СО 2 выглядит так: обогащенный СО 2 пар поступает в скрубберы, где оделяются механические примеси и тяжелые углеводороды. Газ сжимается и прогоняется через очиститель, в котором удаляются влага и нежелательные газы.

Произведенная двуокись углерода может накапливаться в резервуарах длительного хранения, подаваться на станцию зарядки баллонов и огнетушителей, транспортные цистерны, установки для производства «сухого» льда, непосредственно на производственные газирующие линии.

Получение водорода

Существует две основные схемы получения водорода.

Электролизные заводы . Для небольших потребителей водорода предлагаются электролизеры производительностью от 0,5 до 1000 м.куб./час. Чистота 99,9% и выше может удовлетворить требованиям предприятий пищевой, химической отраслей, электроники. Производство технического водорода путем электролиза включает в себя следующие основные последовательно реализуемые стадии: электролитическое разложение воды на водород и кислород 2Н2О→2Н2+О2; каталитическая очистка полученного водорода от кислорода; его сжатие в поршневых компрессорах; адсорбционная осушка; заполнение в баллоны или контейнеры.

Паровой реформинг . Используя источник углеводородов и процесс реформинга, можно произвести водород в малых, средних, больших объемах и того качества, которое нужно потребителю. Обычно предлагаются установки от 100 до 5000 м.куб./час, нефтеперерабатывающие заводы используют установки производительность более 20000 м.куб./час.Процесс выглядит так: у глеводороды (метанол, пропан, природный газ, нефть), используемые в качестве топлива, смешиваются в процессным паром, нагреваются до 480 град.С и разделяются в реакторе, используя основанный на никеле катализатор, по простой формуле СН 4 +Н 2 О+230 кДж=СО+3Н 2

Водородная адсорбционная установка интегрируется в существующую систему контроля и полностью автоматизируется.

Получение ацетилена

Ацетилен впервые был получен в 1836 году Эдмондом Дэви путем обработки водой карбида калия К 2 С 2 и был назван так химиком Бертло в 1860 г.

Промышленное получение ацетилена началось с момента массового производства карбида кальция. В свою очередь карбид кальция получают путем спекания известняка и кокса (угля) СаО+3С=СаС 2 +СО. В Украине сколько-нибудь значительного производства карбида кальция нет.

При обработке карбида кальция водой и образуется ацетилен:

СаС 2 +2Н 2 О=С 2 Н 2 +Са(ОН) 2

Большая часть ацетилена, производимого в Украине, получается из карбида кальция . Для этого используются специальные промышленные генераторы, в которых ацетилен проходит очистку от примесей серы, аммиака и фосфора, от влаги, и далее компрессорами закачивается в баллоны.

Для бытового использования применяются небольшие переносные генераторы, но ацетилен, получаемый в них, обычно влажный и с примесями. Кроме того, невозможно остановить процесс образования ацетилена, что может быть неудобно для небольших работ. В морозы также проблематично использование малых генераторов из-за опасности замерзания воды.

Второй способ получения ацетилена – окислительный пиролиз метана и других углеводородов по формуле 2СН 4 →С 2 Н 2 +3Н 2 , осуществляемый при повышенной температуре 1200-1500 град. с последующим быстрым охлаждением. Ацетилен здесь является промежуточным продуктом при дальнейшем производстве продуктов органического синтеза. Способ пиролиза экономически невыгоден только для получения ацетилена, поэтому применяется на заводах, производящих его дальнейшую переработку в синтетический каучук, винилацетат, винилхлорид, этилен, бутадиен, стирол и другие продукты. В Украине это «Северодонецкий Азот».

Получение пропана.

Под пропаном обычно понимают сжиженную смесь углеводородов, куда входят следующие газы:

Этан – С 2 Н 6 — газ, по плотности близкий к воздуху. Входит в состав сжиженных газов в незначительном количестве. Самая главная причина ограничения его содержания в том, что при температуре 45°С этан не может находится в сжиженном состоянии. При 30 °С упругость его паров достигает 4,8 МПа, тогда как рабочее давления надземных систем газоснабжения сжиженным газом составляет 1,6 МПа, а подземных – 1,0МПа. В то же время незначительное количество этана в пропан-бутановой смеси повышает общее давление насыщенных паров газовой смеси, что обеспечивает в зимнее время избыточное давление, необходимое для нормального газоснабжения.
Пропан – С 3 Н 8 — тяжелый газ (плотность по воздуху 1,52). Технический пропан является основной составляющей сжиженных газов, его процентное соотношение в зимней смеси должно быть не менее 75%. Температура кипения – 42,1°С.

Бутан – С 4 Н 10 — тяжелый газ (плотность по воздуху 2,06). Температура кипения –0,5°С.
Пентан – С 5 Н 12 — тяжелый газ (плотность по воздуху 2,49). Температура кипения +36°С. Содержание в смеси 1-2% от обьема.

Сжиженный газ получают обычно двумя способами – при переработке природного газа на газоперерабатывающих заводах ГПЗ и на нефтеперерабатывающих заводах НПЗ, что определяет доступную цену для потребителя.
Технологическая цепочка производства сжиженных газов начинается с добычи «сырой» нефти или «влажного» природного газа и заканчивается хранением жидких пропана и бутана, полностью свободных от легких газов, тяжелой нефти и очищенных от следов сернистых соединений и воды.
На газовых месторождениях добыча богатого метаном природного газа нередко сопровождается выходом небольших количеств смеси тяжелых углеводородов: от этана и основных компонентов сжиженного газа до соединений компонентов дистиллята («естественного бензина»). Если они присутствуют в значительных количествах, то сжиженные газы и дистиллят удаляют из природного газа во избежание технологических осложнений от конденсата при компримировании газа перед подачей его в трубопровод, а также для получения необходимых химических веществ или дополнительного топлива. Полученная смесь сжиженных газов и дистиллята имеет невысокое качество, но тем не менее имеет спрос в силу невысокой цены.

При добыче нефти непосредственно на месте добычи «сырая» нефть стабилизируется для подготовки ее к дальнейшей транспортировке по трубопроводам или в танкерах к месту потребления. Степень стабилизации, эффективность которой зависит от условий на головке скважины (температура и давление), в свою очередь, определяет количество удаляемых легких газов. Эти газы иногда сжигаются, но в настоящее время все чаще используются как дополнительная продукция, и называется «попутным природным газом». Количество сжиженных газов, остающихся в «сырой» нефти, зависит от степени стабилизации на месте ее добычи. Некоторые сорта нефти перед транспортировкой иногда могут быть специально дополнены сжиженным газом. Содержащиеся в нефти, поступившей на нефтеочистительное предприятие, сжиженные газы улавливают в процессе дистилляции. Их выход колеблется от 2 до 3 % от объема перерабатываемой нефти. Полученные при фракционной разгонке сжиженные газы подвергаются последующей конверсии, которая осуществляется, прежде всего, для увеличения выхода и повышения качества бензина, но также она отделяет примеси из самого сжиженного газа.

Таким образом, предпочтительнее использовать сжиженный газ, полученный в процессе переработки нефти, так как он имеет более стабильный состав, в нем отсутствуют влага, примеси азота, углекислого газа, которые обычно имеются в сжиженном газе, получаемом на газовых месторождениях.