Взгляд из космоса. Для чего нужно дистанционное зондирование Земли? Дистанционное зондирование Методы дистанционного зондирования в геодезии

Технологии дистанционного зондирования Земли (ДЗЗ) из космоса — незаменимый инструмент изучения и постоянного мониторинга нашей планеты, помогающий эффективно использовать и управлять ее ресурсами. Современные технологии ДЗЗ находят применение практически во всех сферах нашей жизни.

Сегодня разработанные предприятиями Роскосмоса технологии и методики использования данных ДЗЗ позволяют предложить уникальные решения для обеспечения безопасности, повышения эффективности разведки и добычи природных ресурсов, внедрения новейших практик в сельское хозяйство, предупреждения чрезвычайных ситуаций и устранении их последствий, охраны окружающей среды и контроля над изменением климата.

Изображения, передаваемые спутниками дистанционного зондирования Земли, находят применение во многих отраслях — сельском хозяйстве, геологических и гидрологических исследованиях, лесоводстве, охране окружающей среды, планировке территорий, образовательных, разведывательных и военных целях. Космические системы ДЗЗ позволяют за короткое время получить необходимые данные с больших площадей (в том числе труднодоступных и опасных участков).

В 2013 году Роскосмос присоединился к деятельности Международной Хартии по космосу и крупным катастрофам. Для обеспечения его участия в деятельности Международной Хартии был создан специализированный Центр Роскосмоса по взаимодействию с Хартией и МЧС России.

Головной организацией Госкорпорации «Роскосмос» по организации приема, обработки и распространения информации дистанционного зондирования Земли является Научный центр оперативного мониторинга Земли (НЦ ОМЗ) холдинга «Российские космические системы» (входит в Госкорпорацию «Роскосмос»). НЦ ОМЗ выполняет функции наземного комплекса планирования, приема, обработки и распространения космической информации с российских космических аппаратов ДЗЗ.

Сферы применения данных дистанционного зондирования Земли

  • Обновление топографических карт
  • Обновление навигационных, дорожных и других специальных карт
  • Прогноз и контроль развития наводнений, оценка ущерба
  • Мониторинг сельского хозяйства
  • Контроль гидротехнических сооружений на каскадах водохранилищ
  • Реальное местонахождение морских судов
  • Отслеживание динамики и состояния рубок леса
  • Природоохранный мониторинг
  • Оценка ущерба от лесных пожаров
  • Соблюдение лицензионных соглашений при освоении месторождений полезных ископаемых
  • Мониторинг разливов нефти и движения нефтяного пятна
  • Наблюдение за ледовой обстановкой
  • Контроль несанкционированного строительства
  • Прогнозы погоды и мониторинг опасных природных явлений
  • Мониторинг чрезвычайных ситуаций, связанных с природными и техногенными воздействиями
  • Планирование аварийно-спасательных работ в районах стихийных бедствий и антропогенных катастроф
  • Мониторинг экосистем и антропогенных объектов (расширение городов, промзон, транспортных магистралей, пересыхающих водоемов и т.п.)
  • Мониторинг строительства объектов дорожно-транспортной инфраструктуры

Нормативные документы, определяющие порядок получения и использования геопространственной информации

  • «Концепция развития российской космической системы дистанционного зондирования Земли на период до 2025 года »
  • Постановление Правительства РФ № 370 от 10 июня 2005 г. с изменениями от 28.02.2015 № 182 «Об утверждении Положения о планировании космических съемок, приеме, обработке и распространении данных дистанционного зондирования Земли высокого линейного разрешения на местности с космических аппаратов типа «Ресурс-ДК »
  • Постановление Правительства РФ № 326 от 28 мая 2007 г. «О порядке получения, использования и предоставления геопространственной информации »
  • Поручение Президента РФ № Пр-619ГС от 13 апреля 2007 г. и поручение Правительства РФ № СИ-ИП-1951 от 24 апреля 2007г. «О разработке и реализации комплекса мер по формированию в РФ системы федеральных, региональных и иных операторов услуг, оказываемых с использованием данных ДЗЗ из космоса »
  • План реализации этих поручений, утвержденный Руководителем Роскосмоса 11 мая 2007 г. «О реализации комплекса мер по формированию в РФ системы федеральных, региональных и иных операторов услуг, оказываемых с использованием данных ДЗЗ из космоса »
  • Государственная программа Российской Федерации «Космическая деятельность России на 2013 — 2020 годы » утверждена постановлением Правительства Российской Федерации от 15 апреля 2014 г. № 306
  • Основы государственной политики Российской Федерации в области космической деятельности на период до 2030 года и дальнейшую перспективу, утвержденных Президентом Российской Федерации от 19 апреля 2013 г. № Пр-906
  • Федеральный закон от 27 июля 2006 г. N 149-ФЗ «Об информации, информационных технологиях и о защите информации » с изменениями и дополнениями от: 27 июля 2010 г., 6 апреля, 21 июля 2011 г., 28 июля 2012 г., 5 апреля, 7 июня, 2 июля, 28 декабря 2013 г., 5 мая 2014 г.

Федеральным, региональным и местным органам исполнительной власти для обеспечения государственных нужд материалы космической съёмки первого уровня стандартной обработки (космические изображения, прошедшие радиометрическую и геометрическую коррекцию) предоставляются на безвозмездной основе. В случае необходимости получения указанными органами материалов космической съемки высших уровней стандартной обработки, за услуги по их изготовлению взимается плата в соответствии с утверждённым прейскурантом цен.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

1.Введение

В 1957 году на орбиту Земли был выведен первый искусственный спутник. 6 и 7 августа 1961 году Герман Степанович Титов, 17 раз обогнув планету, сделал несколько снимков ее поверхности (рис. 1), - с этого началась планомерная космическая фотосъемка. В этом же полете впервые была произведена киносъемка поверхности Земли на советском киноаппарате «Конвас».

С тех пор количество дистанционных наблюдений растет лавинообразно; появились разнообразные фотографические и нефотографические системы, в том числе многозональные фотокамеры, телевизионные камеры со специальной передающей электронно-лучевой трубкой, инфракрасные сканирующие радиометры, микроволновые радиометры для радиотепловой съемки, различные радары для активного зондирования. Значительно возросло и количество космических летательных аппаратов - искусственные спутники, орбитальные станции и пилотируемые корабли.

Где и как используются космические снимки Земли, а также какими они бывают я и хочу рассказать в данной работе.

2.Что такое дистанционное зондирование Земли?

Дистанционное зондирование Земли (ДЗЗ) является методом получения информации об объекте или явлении без непосредственного физического контакта с данным объектом . Дистанционное зондирование является подразделом географии . В современном понимании, термин в основном относится к технологиям воздушного или космического зондирования местности с целью обнаружения, классификации и анализа объектов земной поверхности, а также атмосферы и океана, при помощи распространяемых сигналов (например, электромагнитной радиации). Разделяют на активное (сигнал сначала излучается самолетом или космическим спутником) и пассивное дистанционное зондирование (регистрируется только сигнал других источников, например, солнечный свет).

Пассивные сенсоры дистанционного зондирования регистрируют сигнал, излучаемый или отраженный объектом либо прилегающей территорией. Отраженный солнечный свет - наиболее часто используемый источник излучения, регистрируемый пассивными сенсорами. Примерами пассивного дистанционного зондирования являются цифровая и пленочная фотография, применение инфракрасных, приборов с зарядовой связью и радиометров .

Активные приборы, в свою очередь, излучают сигнал с целью сканирования объекта и пространства, после чего сенсор имеет возможность обнаружить и измерить излучение, отраженное или образованное путём обратного рассеивания с целью зондирования. Примерами активных сенсоров дистанционного зондирования являются радар и лидар , которыми измеряется задержка во времени между излучением и регистрацией возвращенного сигнала, таким образом определяя размещение, скорость и направление движения объекта.

Дистанционное зондирование предоставляет возможность получать данные об опасных, труднодоступных и быстродвижущихся объектах, а также позволяет проводить наблюдения на обширных участках местности. Примерами применения дистанционного зондирования может быть мониторинг вырубки лесов (например, в бассейне Амазонки ), состояния ледников в Арктике и Антарктике , измерение глубины океана с помощью лота. Дистанционное зондирование также приходит на замену дорогостоящим и сравнительно медленным методам сбора информации с поверхности Земли, одновременно гарантируя невмешательство человека в природные процессы на наблюдаемых территориях или объектах. При помощи орбитальных космических аппаратов ученые имеют возможность собирать и передавать данные в различных диапазонах электромагнитного спектра, которые, в сочетании с более масштабными воздушными и наземными измерениями и анализом, обеспечивают необходимый спектр данных для мониторинга актуальных явлений и тенденций, таких как Эль-Ниньо и другие природные феномены, как в кратко-, так и в долгосрочной перспективе. Дистанционное зондирование также имеет прикладное значение в сфере геонаук, сельском хозяйстве, национальной безопасности .

3.Орбитальная группировка России по ДДЗ

Сегодня в России создана Единая территориально-распределительная информационная система дистанционного зондирования Земли (ЕТРИС ДЗЗ). Она уже прошла государственные испытания.

Сегодня российская орбитальная группировка ДЗЗ насчитывает семь космических аппаратов, находящихся в режиме эксплуатации и обеспечивающих все виды и режимы съемки, включая гиперспектральную: «Ресурс-П» №1, №2, №3. «Канопус-В», «Электро-Л» №1 и «Метеор-М» №1 и №2.

«Ресурс-П»

Космические аппараты (КА) этой серии предназначены для многозонального дистанционного зондирования земной поверхности с целью получения в масштабе времени, близком к реальному, высокоинформативных изображений в видимом диапазоне спектра (рис. 2).

Назначение:

исследование природных ресурсов;

контроль загрязнения и деградации окружающей среды;

информационное обеспечение для поиска месторождений полезных ископаемых;

ценка состояния ледовой обстановки;

контроль состояния социально-экономической инфраструктуры;

информационное обеспечение для проведения инженерных изысканий;

создание и обновление кадастровых планов, топографических и навигационных карт;

определение вида и состояния растительности, состав пленки загрязнений на поверхности воды, идентификация минералов, почв;

обнаружение незаконных посевов наркосодержащих растений и контроль их уничтожения.

На «Ресурсе-П» установлена оптическая аппаратура «Геотон Л1», разработанная Холдингом «Швабе», входящем в Госкорпорацию Ростех. Аппаратура «Геотон-Л» высокого разрешения позволяет проводить панхроматическую съемку земной поверхности с разрешением не хуже 1 метра, а также делать спектрозональные снимки с разрешением от 2 до 3 метров с высоты 475 километров (рис. 3).

«Канопус-В»

Данный спутник позволяет проводить мониторинг техногенных и природных чрезвычайных ситуаций (рис 4).

Назначение:

Картографирование;

обнаружение очагов лесных пожаров, крупных выбросов загрязняющих веществ в природную среду;

регистрация аномальных явлений для исследования возможности прогнозирования землетрясений;

мониторинг сельскохозяйственной деятельности, водных и прибрежных ресурсов;

высокооперативное наблюдение заданных районов земной поверхности.

На рисунке 5 показан снимок столицы Кубы Гаваны, полученный со спутника.

«Метеор-М»

Данный комплекс предназначен для оперативного получения глобальной гидрометеорологической информации в целях прогноза погоды, контроля озонового слоя и радиационной обстановки в околоземном космическом пространстве, а также для мониторинга морской поверхности, включая ледовую обстановку, с целью обеспечения судоходства в полярных районах (рис. 6).

В состав бортового информационного комплекса КА «Метеор-М» включена бортовая аппаратура международной системы поиска и спасания терпящих бедствие КОСПАС-САРСАТ.

Решаемые задачи:

глобальное наблюдение атмосферы и поверхности Земли;

мониторинг состояния окружающей среды;

мониторинг чрезвычайных ситуаций природного и техногенного характера;

решения задач сельского и лесного хозяйства;

научные исследования.

На рисунке 7 представлен снимок со спутника «Метеор-М» на котором видно извержение вулкана в Индонезии.

«Электро-Л»

Спутники данной серии предназначены для получения изображений облачности и подстилающей поверхности Земли (рис. 8).

Решаемые задачи:

получение данных о гелиогеофизической обстановке на высоте орбиты КА для решения задач гелиогеофизического обеспечения;

выполнение телекоммуникационных функций по распространению, обмену гидрометеорологическими и гелиогеофизическими данными и ретрансляции информации с платформ сбора данных;

сбор и ретрансляция гидрометеорологической и служебной информации.

На рисунке 9 представлен снимок со спутника «Электро-Л».

4.Развитие картографии с использованием ДЗЗ

Особенно широкое применение снимки из космоса нашли в картографии. И это понятно, потому что космический фотоснимок точно и с достаточной подробностью запечатлевает поверхность Земли, и специалисты могут легко перенести изображение на карту.

Внедрение в технологический процесс создания карт данных ДЗЗ позволило ускорить процесс картографирования практически всех направлений (топографического, тематическое) и повысить качество картографической продукции.

До последнего времени мелкомасштабные физические карты мира, континентов, отдельных государства или крупных регионов создавались путем сведения и преобразования материалов топографических карт крупных и средних масштабов, основанных на данных аэросъемочных и наземных топографо-геодезических работ. Благодаря региональным и глобальным космическим снимкам автоматически удалось получить новые объективные физические карты и сопоставить эти реальные изображения лика планеты со старыми сводными. Оказалось, что они не схожи: на прежних отсутствуют следы движения ледников, границы ландшафтных зон, ряд вулканов, русла древних рек и высохшие озера.

Космические снимки позволяют получить объективную информацию об исчезнувшей в наше время гидрографической сети и высохших водоемах. По «небесным» данным на карты нанесены древние долины и дельты Сырдарьи и Амударьи, прежние русла Зеравшана и ряда притоков Амазонки, а также очертания значительных озер, занимавших некогда замкнутые котловины в Восточном Казахстане, Северо-Западном Китае и Южной Монголии.

К числу важнейших задач картографии, решаемых с помощью данных ДЗЗ, можно отнести:

создание и обновление топографических карт всего масштабного ряда;

обновление кадастровых планов;

создание тематических карт, как природно-ресурсных, так и социально-экономических.

Составление картосхемы

Чтение космических снимков, основано на опознавательных (дешифровочных) признаках. Основными из них служат форма объектов, их размеры и тон. Реки, озера и другие водоемы изображаются на снимках темными тонами (черным цветом) с четким выделением береговых линий. Для лесной растительности характерны менее темные тона мелкозернистой структуры. Подробности горного рельефа хорошо выделяются резкими контрастными тонами, которые получаются на фотографии в результате различной освещенности противоположных склонов. Населенные пункты и дороги также можно опознать по своим дешифровочным признакам, но только под большим увеличением.

Использование космических снимков в картографических целях начинают с определения их масштаба и привязки к карте. Эту работу обычно выполняют по карте более мелкого масштаба, чем масштаб снимка, так как на нее приходится наносить границы не одного, а целого ряда снимков.

Сличая снимок с картой, можно узнать, что и как изображено на снимке, как это показано на карте и какие дополнительные сведения о местности дает фотоизображение земной поверхности из космоса. И даже в том случае, если карта будет того же масштаба, что и фотоснимок, все равно по снимку можно получить более обширную и главное - свежую информацию о местности по сравнению с картой.

Составление карт по космическим снимкам выполняют так же как и по аэрофотоснимкам. В зависимости от точности и назначения карт применяют различные методы их составления с использованием соответствующих фотограмметрических приборов. Наиболее легко изготовить карту в масштабе снимка. Именно такие карты и помещают обычно рядом со снимками в альбомах и книгах. Для их составления достаточно скопировать на кальку со снимка изображения местных предметов, а затем с кальки перенести их на бумагу.

Такие картографические чертежи называют картосхемами. Они отображают только контуры местности (без рельефа), имеют произвольный масштаб и не привязаны к картографической сетке. На рисунке 10 изображена картосхема функциональных зон г. Перми.

Фотокарты

Наглядно, выразительное отображение местности на снимках вызывает естественное стремление использовать аэрокосмическое изображение в дополнение к карте, а иногда и вместо нее. Это привело к созданию нового вида картографической продукции - фотокарт.

Фотокарты начали создавать в 1950-х годах, используя материалы аэросъемки. Тогда их изготовливали только в сравнительно крупных масштабах, до
1:50000. Построить высококачественные фотокарты более мелких масштабов не удавалось, так как мозаичное фотоизображение, смонтированное из многих снимков, было неоднородным, пестрым. Появление космических снимков, с большим пространственным охватом, получаемых в широком диапазоне масштабов и разрешения, вызвало к жизни быстрое развитие этого нового вида картографических произведений, весьма разнообразных по содержанию и форме. Высококачественные фотокарты начали составлять в масштабах 1:100000 и мельче. Производственное изготовление фотокарт стало возможным лишь после накопления фондов снимков на обширные территории.

Тенденция соединения снимков в фотокарты проявлялась начиная с первых космических экспериментов. Массовое получение снимков с первой долговременно работавшей орбитальной станции «Салют-4» завершилось созданием серии фотокарт южных республик бывшего Советского Союза. Через несколько месяцев работы первого американского ресурсного спутника Landsat была смонтирована из почти 600 снимков фотокарта США, репродуцированная затем в широком диапазоне масштабов от 1:250 000 до 1:5 000 000. Позже по снимкам со спутника Landsat созданы фотокарты многих стран и даже континентов. На рисунке 11 показана фотокарта города Екатеринбург, изготовленная по космическим снимкам с американского спутника.

Тематическое картографирование

В настоящее время по космическим снимкам созданы разнообразные тематические карты. В ряде случаев характеристики некоторых явлений можно определить только по космическим снимкам, а получить их другими методами невозможно. По результатам космического фотографирования обновлены и детализированы многие тематические карты, созданы новые типы геологических ландшафтных и других карт . При составлении тематических карт особенно полезными являются снимки, полученные в различных зонах спектра, так как они содержат богатую и разностороннюю информацию. На практике, при использовании данных дистанционного зондирования Земли, тематическое картографирование выполняется непосредственно после дешифрирования изображения. На рисунке 12 показаны исходный космический снимок и полученная на его основе тематическая карта преобладающих эрозионных процессов.

Создание и обновление топографических карт

Технология составления топографических карт предусматривает выполнение полного цикла работ- от предварительной обработки данных ДДЗ до получения готовой карты в векторном виде и необходимом формате. На рисунке 13 исходная фотография с КА. На рисунке 14 на исходной фотографии произвели векторизацию объектов, а на рисунок 15 демонстрирует полученную векторную карту данной местности.

5.Применение ДЗЗ в сельском хозяйстве

При помощи спутников можно с определенной цикличностью получать изображения отдельных полей, регионов и округов. Пользователи могут получать ценную информацию о состоянии угодий, в том числе идентификацию культур, определение посевных площадей сельскохозяйственных культур и состояние урожая. Спутниковые данные используются для точного управления и мониторинга результатов ведения сельского хозяйства на различных уровнях. Эти данные могут быть использованы для оптимизации фермерского хозяйства и пространственно-ориентированного управления техническими операциями. Изображения могут помочь определить местоположение урожая и степень истощения земель, а затем могут быть использованы для разработки и реализации плана лечения, для локальной оптимизации использования сельскохозяйственных химикатов .

6.Мониторинг лесных пожаров с помощью ДЗЗ

Дистанционное зондирование также применяется для мониторинга лесного покрова и идентификации видов . Полученные таким способом карты могут покрывать большую площадь, одновременно отображая детальные измерения и характеристики территории (тип деревьев, высота, плотность). Используя данные дистанционного зондирования, возможно определить и разграничить различные типы леса, что было бы трудно достичь, используя традиционные методы на поверхности земли. Данные доступны в различных масштабах и разрешениях, что вполне соответствует локальным или региональные требованиям. Требования к детальности отображения местности зависит от масштаба исследования. Для отображения изменений в лесном покрове (текстуры, плотности листьев) применяются:

мультиспектральные изображения: для точной идентификации видов необходимы данные с очень высоким разрешением;

многоразовые снимки одной территории, используются для получения информации о сезонных изменениях различных видов;

стереофотографии - для разграничения видов, оценки плотности и высоты деревьев. Стереофотографии предоставляют уникальный вид на лесной покров, доступный только через технологии дистанционного зондирования.

Пожары, как один из наиболее мощных факторов воздействия на леса, часто приводят к полной гибели насаждений или их частичным повреждениям, в зависимости от вида, интенсивности и продолжительности воздействия огня. Оценка экономических и экологических последствий лесных пожаров требует своевременного получения объективных данных о состоянии поврежденных насаждений. Особенно остро проблема оперативных данных о состоянии лесов встала летом 2010 года, когда нашу страну «поглотила» небывалая жара, и, как следствие, возникла катастрофическая ситуация с лесными пожарами. На снимках из космоса было хорошо видно, где и как горят лесные массивы и торфяники в России. По снимкам можно было спрогнозировать развитие событий при различных погодных условиях. На рисунке 16 показано распространение в атмосфере угарного газа.

Спутниковая информация позволяет оценить масштабы лесных пожаров, а также вызванную ими неблагоприятную экологическую обстановку. Поскольку спутниковая информация порой является единственным источником, за этим направлением науки - будущее оперативного наблюдения и контроля природных процессов и явлений .

Заключение

Таким образом, область применения космических снимков трудно переоценить. И, казалось бы, ДЗЗ открывает большие перспективы для частных компаний, занимающихся сельским хозяйством, перевозом грузов морским или сухопутным путями и т.д. Но, к сожалению, в отличии от западных корпораций, российские не приучены тратить деньги за получение информации с космических спутников. И за это, порой, приходится дорого платить. В частности, 20 сентября 2002 года в горах Северной Осетии произошла трагедия: в Кармадорском ущелье сошел ледник Колка, унесший жизни более 100 человек, в том числе членов съемочной группы Сергея Бодрова. То, что ледник движется было хорошо видно из космоса. Этой информацией поделился Герой России космонавт-испытатель Валерий Корзун на встрече со школьниками в г. Лыткарино.

Тем не менее, я надеюсь, что в ближайшем будущем космические технологии в области ДЗЗ будут нам всем доступнее и мы сможем получать практическую выгоду не только на государственном уровне, но и в частной жизни.

Список использованных источников

https://ru.wikipedia.org

russianspacesystems.ru

Лупян Е.А., Лаврова О.Ю., Барталев С.А. «Дни космической науки 2010» - дистанционное зондирование Земли//Современные проблемы дистанционного зондирования Земли из космоса: Физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений и объектов. Сборник научных статей. Том 7. Номер 4. - М.: ООО «ДоМира», 2010. - 334 с.

https://sovzond.ru

gis.ugatu.ac.ru

rusnauka.com

Дистанционное зондирование Земли (ДЗЗ) - получение информации о поверхности Земли и объектах на ней, атмосфере, океане, верхнем слое земной коры бесконтактными методами, при которых регистрирующий прибор удален от объекта исследований на значительное расстояние. Общей физической основой дистанционного зондирования является функциональная зависимость между зарегистрированными параметрами собственного или отраженного излучения объекта и его биогеофизическими характеристиками и пространственным положением.

В современном облике дистанционного зондирования выделяются два взаимосвязанных направления - естественно-научное (дистанционные исследования) и инженерно-техническое (дистанционные методы), что нашло отражение в широко распространенных англоязычных терминах remote sensing и remote sensing techniques. Понимание сущности дистанционного зондирования неоднозначно. Аэрокосмическая школа Московского университета им. М.В.Ломоносова в качестве предмета дистанционного зондирования как научной дисциплины рассматривает пространственно-временные свойства и отношения природных и социально-экономических объектов, проявляющиеся прямо или косвенно в собственном или отраженном излучении, дистанционно регистрируемом из космоса или с воздуха в виде двумерного изображения - снимка. Эта существенная часть дистанционного зондирования названа аэрокосмическим зондированием (АКЗ) , что подчеркивает его преемственность с традиционными аэрометодами. Метод аэрокосмического зондирования основан на использовании снимков, которые, как свидетельствует практика, представляют наибольшие возможности для комплексного изучения земной поверхности.

Во всех странах действенным стимулом развития аэрокосмического зондирования служат запросы военных ведомств. С внедрением космических методов и современных цифровых технологий аэрокосмическое зондирование приобретает все более важное экономическое значение и становится обязательным элементом высшего образования в природоведческих вузах, превращается в мощное средство изучения Земли от локальных исследований отдельных компонентов до глобального изучения планеты в целом. Поэтому при изложении различных аспектов аэрокосмического зондирования целесообразно рассматривать его как метод исследований, результативно применяемый во всех науках о Земле, и, прежде всего в географии.

История и современное состояние аэрокосмического зондирования

Дистанционные методы применяются в исследованиях Земли очень давно. Вначале использовались рисованные снимки , которые фиксировали пространственное расположение изучаемых объектов. С изобретением фотографии возникла наземная фототеодолитная съемка, при которой по перспективным фотоснимкам составляли карты горных районов. Развитие авиации обеспечило получение аэрофотоснимков с изображением местности сверху, в плане. Это вооружило науки о Земле мощным средством исследований — аэрометодами.

История развития аэрокосмических методов свидетельствует о том, что новые достижения науки и техники сразу же используются для совершенствования технологий получения снимков. Так произошло в середине XX в., когда такие новшества, как компьютеры, космические аппараты, радиоэлектронные съемочные системы, совершили революционные преобразования в традиционных аэрофотометодах - зародилось аэрокосмическое зондирование. Космические снимки предоставили геоинформацию для решения проблем регионального и глобального уровней.

В настоящее время отчетливо проявляются следующие тенденции поступательного развития аэрокосмического зондирования.

  • Космические снимки, оперативно размещаемые в Интернете, становятся наиболее востребованной видеоинформацией о местности как для специалистов-профессионалов, так и для широких слоев населения.
  • Разрешение и метрические свойства космических снимков открытого доступа быстро повышаются. Получают распространение орбитальные снимки сверхвысокого разрешения - метрового и даже дециметрового, которые успешно конкурируют с аэроснимками.
  • Аналоговые фотографические снимки и традиционные технологии их обработки утрачивают свое прежнее монопольное значение. Основным обрабатывающим прибором стал компьютер, оснащенный специализированным программным обеспечением и периферией.
  • Развитие всепогодной радиолокации превращает ее в прогрессивный метод получения метрически точной пространственной геоинформации, который начинает эффективно комплексироваться с оптическими технологиями аэрокосмического зондирования.
  • Быстро формируется рынок разнообразной продукции аэрокосмического зондирования Земли. Неуклонно увеличивается число коммерческих космических аппаратов, функционирующих на орбитах, особенно зарубежных. Наибольшее применение находят снимки, получаемые ресурсными спутниковыми системами Landsat (США), SPOT (Франция), IRS (Индия), картографическими спутниками ALOS (Япония), Cartosat (Индия), спутниками сверхвысокого разрешения Ikonos, QiuckBird, GeoEye (США), в том числе радиолокационными TerraSAR-X и TanDEM-X (Германия), выполняющими тандемную интерферометрическую съемку. Успешно эксплуатируется система спутников космического мониторинга RapidEye (Германия).

Принципиальная технологическая схема дистанционных исследований Земли

Рис. 1

На рис.1 в обобщенном виде представлена принципиальная схема выполнения аэрокосмических исследований. Она включает основные технологические этапы: получение снимка объекта исследования и дальнейшую работу со снимками - их дешифрирование и фотограмметрическую обработку, а также конечную цель исследований - составленную по снимкам карту, геоинформационную систему, разработанный прогноз. Поскольку получить необходимые характеристики изучаемого объекта только по снимкам без каких-либо натурных определений, без обращения к «земной правде» в большинстве случаев невозможно, необходимо их эталонирование. Важным элементом исследований по снимкам является также оценка достоверности и точности полученных результатов. Для этого приходится привлекать другую информацию и обрабатывать ее иными методами, что требует дополнительных затрат.

Снимок - основное понятие аэрокосмического зондирования

Аэрокосмические снимки — основной результат аэрокосмических съемок, для выполнения которых используют разнообразные авиационные и космические носители (рис. 2). Аэрокосмические съемки делят на пассивные , которые предусматривают регистрацию отраженного солнечного или собственного излучения Земли, и активные , при которых выполняют регистрацию отраженного искусственного излучения.

Рис. 2

Аэрокосмический снимок — это двумерное изображение реальных объектов, которое получено по определенным геометрическим и радиометрическим (фотометрическим) законам путем дистанционной регистрации яркости объектов и предназначено для исследования видимых и скрытых объектов, явлений и процессов окружающего мира, а также для определения их пространственного положения.

Диапазон масштабов современных аэрокосмических снимков огромен: он может меняться от 1:1000 до 1:100 000 000, т. е. в сто тысяч раз. При этом наиболее распространенные масштабы аэрофотоснимков лежат в пределах 1:10 000—1:50 000, а космических — 1:200 000—1:10 000 000. Все аэрокосмические снимки принято делить на аналоговые (обычно фотографические) и цифровые (электронные). Изображение цифровых снимков образовано из отдельных одинаковых элементов — пикселов (от англ. picture element рixel ); яркость каждого пиксела характеризуется одним числом.

Аэрокосмические снимки как информационные модели местности характеризуются рядом свойств, среди которых выделяют изобразительные, радиометрические (фотометрические) и геометрические. Изобразительные свойства характеризуют способность снимков воспроизводить мелкие детали, цвета и тоновые градации объектов, радиометрические свидетельствуют о точности количественной регистрации снимком яркостей объектов, геометрические характеризуют возможность определения по снимкам размеров, длин и площадей объектов и их взаимного положения.

Важными показателями снимка служат охват и пространственное разрешение . Обычно для исследований требуются снимки большого охвата и высокого разрешения. Однако удовлетворить эти противоречивые требования в одном снимке не удается. Обычно чем больше охват получаемых снимков, тем ниже их разрешение. Поэтому приходится идти на компромиссные решения либо выполнять одновременно съемку несколькими системами с различными параметрами.

Технологии получения и основные типы аэрокосмических снимков

Аэрокосмическую съемку ведут в окнах прозрачности атмосферы (рис.3), используя излучение в разных спектральных диапазонах - световом (видимом, ближнем и среднем инфракрасном), тепловом инфракрасном и радиодиапазоне.

Рис. 3

В каждом из них применяют разные технологии получения изображения и в зависимости от этого выделяются несколько типов снимков (рис.4).

Рис.4

Снимки в световом диапазоне делятся на фотографические и сканерные, которые в свою очередь подразделяются на полученные оптико-механическим сканированием (ОМ-сканерные) и оптико-электронным с использованием линейных приемников излучения на основе приборов с зарядовой связью (ПЗС-сканерные). На таких снимках отображаются оптические характеристики объектов - их яркость, спектральная яркость. Применяя многозональный принцип съемки, получают в этом диапазоне многозональные снимки , а при большом числе съемочных зон - гиперспектральные , использование которых основано на спектральной отражательной способности объектов съемки, их спектральной яркости .

Проводя съемку с использованием приемников теплового излучения - тепловую съемку , - получают тепловые инфракрасные снимки. Съемку в радиодиапазоне ведут, применяя как пассивные, так и активные методы, и в зависимости от этого снимки делятся на микроволновые радиометрические, получаемые при регистрации собственного излучения исследуемых объектов, и радиолокационные снимки, получаемые при регистрации отраженного радиоизлучения, посылаемого с носителя - радиолокационной съемке .

Методы получения информации по снимкам: дешифрирование и фотограмметрические измерения

Необходимая для исследований информация (предметно-содержательная и геометрическая) извлекается из снимков двумя основными методами, это дешифрирование и фотограмметрические измерения

Дешифрирование, которое должно дать ответ на основной вопрос - что изображено на снимке, позволяет получать предметную, тематическую (в основном качественную) информацию об изучаемом объекте или процессе, его связях с окружающими объектами. В визуальном дешифрировании обычно выделяют чтение снимков и их интерпретацию (толкование). Умение читать снимки базируется на знании дешифровочных признаков объектов и изобразительных свойств снимков. Глубина же интерпретационного дешифрирования существенно зависит от уровня подготовки исполнителя. Чем лучше знает дешифровщик предмет своего исследования, тем полнее и достовернее информация, извлекаемая из снимка.

Фотограмметрическая обработка (измерения) призвана дать ответ на вопрос - где находится изучаемый объект и каковы его геометрические характеристики : размер, форма. Для этого выполняется трансформирование снимков, их изображение приводится в определенную картографическую проекцию. Это позволяет определять по снимкам положение объектов и их изменение во времени.

Современные компьютерные технологии получения информации по снимкам позволяют решать следующие группы задач:

  • визуализация цифровых снимков;
  • геометрические и яркостные преобразования снимков, включая их коррекцию;
  • конструирование новых производных изображений по первичным снимкам;
  • определение количественных характеристик объектов;
  • компьютерное дешифрирование снимков (классификация).

Для выполнения компьютерного дешифрирования применяют наиболее распространенный подход, основанный на спектральных признаках, в качестве которых служит набор спектральных яркостей, зарегистрированных многозональным снимком. Формальная задача компьютерного дешифрирования снимков сводится к классификации — последовательной «сортировке» всех пикселов цифрового снимка на несколько групп. Для этого предложены алгоритмы классификации двух видов — с обучением и без обучения, или кластеризации (от англ. cluster — скопление, группа). При классификации с обучением пикселы многозонального снимка группируются на основе сравнения их яркостей в каждой спектральной зоне с эталонными значениями. При кластеризации же все пикселы разделяют на группы-кластеры по какому-либо формальному признаку, не прибегая к обучающим данным. Затем кластеры, полученные в результате автоматической группировки пикселов, дешифровщик относит к тем или иным объектам. Достоверность компьютерного дешифрирования формально характеризуется отношением числа правильно классифицируемых пикселов к их общему числу.

Вычислительные алгоритмы, основанные на спектральных признаках отдельных пикселов, обеспечивают надежное решение только самых простых классификационных задач; они рационально включаются в качестве элементов в сложный процесс визуального дешифрирования, которое пока остается основным методом извлечения природной и социально-экономической информации из аэрокосмических снимков.

Применение аэрокосмического зондирования в картографировании и исследованиях Земли

Аэрокосмические снимки применяются во всех направлениях изучения Земли, но интенсивность их использования и результативность применения в разных областях исследований различны. Они чрезвычайно важны в исследованиях литосферы, показывая раздробленность геологического фундамента линейными разломами и кольцевыми структурами и облегчая поиски месторождений полезных ископаемых; в исследованиях атмосферы, где снимки дали основу метеорологических прогнозов; благодаря снимкам из космоса открыта вихревая структура океана, зафиксировано состояние растительного покрова Земли на рубеже веков и его изменения в последние десятилетия. Пока космические снимки значительно меньше применяются при социально-экономических исследованиях. Различаются и типы задач, решаемых по снимкам в разных предметных областях. Так, решение инвентаризационных задач реализуется при изучении природных ресурсов, например при картографировании почв, растительности, поскольку снимки наиболее полно отображают сложную пространственную структуру почвенно-растительного покрова. Оценочные задачи, оперативная оценка состояния экосистем выполняются в рамках исследований биопродуктивности океанов, ледового покрова морей, контроля за пожароопасной ситуацией в лесах. Прогностические задачи, использование снимков для моделирования и прогнозирования наиболее развито в метеорологии, где их анализ является основой прогнозов погоды, в гидрологии — для прогноза талого стока рек, паводков и наводнений. Начинаются исследования по прогнозированию сейсмической активности, землетрясений на основе анализа состояния литосферы и верхней атмосферы.

При работе со снимками используются все виды их обработки, но наиболее широко развито дешифрирование снимков, прежде всего визуальное, которое теперь подкрепляется возможностями компьютерных улучшающих преобразований и классификации изучаемых объектов по снимкам. Большое развитие получило создание по снимкам различных производных изображений на основе спектральных индексов. С выполнением гиперспектральной съемки стали создаваться десятки видов таких индексных изображений. Разработка методов интерферометрической обработки материалов радиолокационной съемк и открыла возможность высокоточных определений смещений земной поверхности. Переход к цифровым методам съемки, развитие цифровой стереоскопической съемки и создание цифровых фотограмметрических систем расширили возможности фотограмметрической обработки космических снимков, используемой главным образом для создания и обновления топографических карт.

Хотя одно из основных достоинств космических снимков заключается в совместном отображении всех компонентов земной оболочки, обеспечивающем комплексность исследований, тем не менее применение снимков в различных областях изучения Земли шло пока разрозненно, так как везде требовалась углубленная разработка собственных методик. Идея комплексных исследований наиболее полно реализована при выполнении в нашей стране программы комплексной картографической инвентаризации природных ресурсов, когда по снимкам создавались серии взаимоувязанных и взаимосогласованных карт. Осознание на рубеже веков экологических проблем, нависших над человечеством, и парадигма изучения Земли как системы вновь активизировали комплексные межотраслевые исследования.

Анализ применения снимков в разных направлениях исследований четко показывает, что при всем многообразии решаемых задач магистральный путь практического использования аэрокосмических снимков лежит через карту, которая имеет самостоятельное значение и, кроме того, служит базовой основой ГИС.

Рекомендуемая литература

1. Книжников Ю.Ф., Кравцова В.И., Тутубалина О.В . Аэрокосмические методы географических исследований - М.:Изд.Центр Академия. 2004. 336 с.

3. Краснопевцев Б.В. Фотограмметрия. - М.:МИИГАиК, 2008. - 160 с.

2. Лабутина И.А. Дешифрирование аэрокосмических снимков. - М.:Аспект Пресс. 2004. -184 с.

4. Смирнов Л.Е. Аэрокосмические методы географических исследований. - СПб.:Изд-во С-Петербургского ун-та, 2005. - 348 с.

5. Рис. Г.У. Основы дистанционного зондирования. -М.: Техносфера, 2006, 336 с.

6. Jensen J.R. Remote sensing of the environment: an Earth resource perspective. — Prentice Hall, 2000. — 544 p.

Атласы аэрокосмических снимков:

8. Дешифрирование многозональных аэрокосмических снимков. Методика и результаты. — М.: Наука; Берлин: Академи-Ферлаг. — Т. 1. — 1982. — 84 с.;

9. Дешифрирование многозональных аэрокосмических снимков. Система «Фрагмент». Методика и результаты. — М.: Наука; Берлин: Академи-Ферлаг. Т. 2. — 1988. — 124 с.

10. Космические методы геоэкологии. — М.: Изд-во Моск. ун-та, 1998. — 104 с.

сбор информации об объекте или явлении с помощью регистрирующего прибора, не находящегося в непосредственном контакте с данным объектом или явлением. Термин «дистанционное зондирование» обычно включает в себя регистрацию (запись) электромагнитных излучений посредством различных камер, сканеров, микроволновых приемников, радиолокаторов и других приборов такого рода. Дистанционное зондирование используется для сбора и записи информации о морском дне, об атмосфере Земли, о Солнечной системе. Оно осуществляется с применением морских судов, самолетов, космических летательных аппаратов и наземных телескопов. Науки, ориентированные на полевые работы, к числу которых относятся такие, как геология, лесоводство и география, также обычно используют дистанционное зондирование для сбора данных в целях проведения своих исследований. См. также СПУТНИК СВЯЗИ; ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ.

Бурша М. Основы космической геодезии . М., 1971–1975
Дистанционное зондирование в метеорологии, океанологии и гидрологии . М., 1984
Зейболд Е., Бергер В. Дно океана . М., 1984
Мишев Д. Дистанционные исследования Земли из космоса . М., 1985

Найти "ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ " на

Получение и обработка данных для ГИС - наиболее важный и трудоемкий этап создания подобных информационных систем. В настоящее время самым перспективным и экономически целесообразным считается метод получения данных об объектах на основе данных дистанцион­ного зондирования Земли (ДЗЗ) и GPS-измерений.

В широком смысле дистанционное зондирование - это получение любыми неконтактными методами информации о поверхности Земли, объектах на ней или в ее недрах. Традиционно к данным дистанционного зондирования относят только те методы, которые позволяют получить из космоса или с воздуха изображение земной поверхности в каких-либо участках электромаг­нитного спектра.

Существует несколько видов съемки, использующих специфические свойства излучений с различными длинами волн. При проведении географического анализа, помимо собственно ДЗЗ, обязательно используются пространственные данных из других источников - цифровые топо­графические и тематические карты, схемы инфраструктуры, внешние базы данных. Снимки поз­воляют не только выявлять различные явления и объекты, но и оценивать их количественно.

Достоинства метода дистанционного зондирования Земли заключается в следующем:

Актуальность данных на момент съемки (большинство картографических материалов безнадежно устарели);

Высокая оперативность получения данных;

Высокая точность обработки данных за счет применения GPS технологий;

Высокая информативность (применение спектрозональной, инфракрасной и радарной съемки позволяет увидеть детали, не различимые на обычных снимках);

Экономическая целесообразность (затраты на получение информации посредством ДЗЗ существенно ниже наземных полевых работ);

Возможность получение трехмерной модели местности (матрицы рельефа) за счет ис­пользования стереорежима или лидарных методов зондирования и, как следствие, воз­можность проводить трехмерное моделирование участка земной поверхности (системы виртуальной реальности).

Дистанционные методы характеризуются тем, что регистрирующий прибор значительно удален от исследуемого объекта. При таких исследованиях явлений и процессов на земной по­верхности расстояния до объектов могут измеряться от единиц до тысяч километров. Это обстоя­тельство обеспечивает необходимый обзор поверхности и позволяет получать максимально генерализованные изображения.

Существуют различные классификации ДЗЗ. Отметим наиболее важные с точки зрения практического сбора данных в нефтегазовой отрасли.

Регистрироваться может собственное излучение объектов и отраженное излучение дру­гих источников. Этими источниками могут быть Солнце или сама съемочная аппаратура. В по­следнем случае используется когерентное излучение (радары, сонары и лазеры), что позволяет регистрировать не только интенсивность излучения, но также и его поляризацию, фазу и допле- ровское смещение, что дает дополнительную информацию. Понятно, что работа самоизлучающих (активных) сенсоров не зависит от времени суток, но зато требует значительных затрат энер­гии. Таким образом, виды зондирования по источнику сигнала:

Активное (вынужденное излучение объектов, инициированное искусственным источ­ником направленного действия);

Пассивное (собственное, естественное отраженное или вторичное тепловое излучение объектов на поверхности Земли, обусловленное солнечной активностью).

Съемочная аппаратура может размещаться на различных платформах. Платформой мо­жет быть космический аппарат (КА, спутник), самолет, вертолет и даже простая тренога. В по­следнем случае мы имеем дело с наземной съемкой боковых сторон объектов (например, для ар­хитектурных и реставрационных задач) или наклонной съемкой с естественных или искусствен­ных высотных объектов. Третий вид платформы не рассматривается в силу того, что он относит­ся к специальностям, далеким от той, для которой написаны данные лекции.

На одной платформе может размещаться несколько съемочных устройств, называемых инструментами или сенсорами, что обычно для КА. Например, спутники Ресурс-О1 несут сенсо­ры МСУ-Э и МСУ-СК, а спутники SPOT - по два одинаковых сенсора HRV (SPOT-4 - HRVIR). Понятно, что чем дальше находится платформа с сенсором от изучаемого объекта, тем больший охват и меньшую детализацию будут иметь получаемые изображения.

Поэтому в настоящее время выделяют следующие виды съемки для получения дан­ных дистанционного зондирования:

1. Космическая съемка (фотографическая или оптико-электронная):

Панхроматическая (чаще в одном широком видимом участке спектра) - простейший пример черно-белая съемка;

Цветная (съемка в нескольких, чаще реальных цветах на одном носителе);

Многозональная (одновременная, но раздельная фиксация изображения в разных зонах спектра);

Радарная (радиолокационная);

2. Аэрофотосъемка (фотографическая или оптико-электронная):

Те же виды ДЗЗ, что и в космической съемке;

Лидарная (лазерная).

Оба вида съемки находят широкое применение в нефтегазовой отрасли при создании ГИС предприятия, при этом каждый из них занимает свою нишу. Космическая съемка (КС), имеет более низкое разрешение (от 30 до 1 м в зависимости от типа съемки и типа космического аппарата), но за счет этого охватывает большие пространства. Космическая съемка используется для съемки больших площадей в целях получения оперативной и актуальной информации о рай­оне предполагаемых геологоразведочных работ, базовой подосновы для создания глобальной ГИС на район разработки полезных ископаемых, экологического мониторинга нефтяных разли­вов и т.п. При этом используется как обычная монохромная (черно-белая съемка), так и спектро­зональная.

Аэрофотосъемка (АФС), позволяет получать изображение более высокого разрешения (от 1-2 м до 5-7 см). Аэрофотосъемка используется для получения высоко детальных материалов для решения задач земельного кадастра применительно к арендуемым участкам добычи полезных ископаемых, учета и управления имуществом. Кроме того, использование аэрофотосъемки на се­годняшний день представляется оптимальным вариантом получения данных для создания ГИС на линейно-протяженные объекты (нефте-, газопроводы и т.д.) за счет возможности применения «коридорной» съемки.

Характеристики получаемых снимков (и АФС, и КС), т.е. возможность обнаружить и из­мерить то или иное явление, объект или процесс зависят от характеристик сенсоров соответ­ственно. Главной характеристикой является разрешающая способность.

Системы ДЗЗ характеризуются несколькими видами разрешений: пространствен­ным, спектральным, радиометрическим и временным. Под термином «разрешение» обычно под­разумевается пространственное разрешение.

Пространственное разрешение (рисунок 1) характеризует размер наименьших объектов, различимых на изображении. В зависимости от решаемых задач, могут использоваться данные низкого (более 100 м), среднего (10 - 100 м) и высокого (менее 10 м) разрешений. Снимки низко­го пространственного разрешения являются обзорными и позволяют одномоментно охватывать значительные территории - вплоть до целого полушария. Такие данные используются чаще всего в метеорологии, при мониторинге лесных пожаров и других масштабных природных бедствий. Снимки среднего пространственного разрешения на сегодня - основной источник данных для мониторинга природной среды. Спутники со съемочной аппаратурой, работающей в этом диапа­зоне пространственных разрешений, запускались и запускаются многими странами - Россией, США, Францией и др., что обеспечивает постоянство и непрерывность наблюдения. Съемка вы­сокого разрешения из космоса до недавнего времени велась почти исключительно в интересах военной разведки, а с воздуха - с целью топографического картографирования. Однако сегодня уже есть несколько коммерчески доступных космических сенсоров высокого разрешения (КВР- 1000, IRS, IKONOS), позволяющих проводить пространственный анализ с большей точностью или уточнять результаты анализа при среднем или низком разрешении.


Спектральное разрешение указывает на то, какие участки спектра электромагнитных волн (ЭМВ) регистрируются сенсором. При анализе природной среды, например, для экологиче­ского мониторинга, этот параметр - наиболее важный. Условно весь диапазон длин волн, исполь­зуемых в ДЗЗ, можно поделить на три участка - радиоволны, тепловое излучение (ИК-излучение) и видимый свет. Такое деление обусловлено различием взаимодействия электромагнитных волн и земной поверхности, различием в процессах, определяющих отражение и излучение ЭМВ.

Наиболее часто используемый диапазон ЭМВ - видимый свет и примыкающее к нему коротковолновое ИК-излучение. В этом диапазоне отражаемая солнечная радиация несет в себе информацию, главным образом, о химическом составе поверхности. Подобно тому, как челове­ческий глаз различает вещества по цвету, сенсор дистанционного зондирования фиксирует «цвет» в более широком понимании этого слова. В то время как человеческий глаз регистрирует лишь три участка (зоны) электромагнитного спектра, современные сенсоры способны различать десятки и сотни таких зон, что позволяет надежно выявлять объекты и явления по их заранее из­вестным спектрограммам. Для многих практических задач такая детальность нужна не всегда. Если интересующие объекты известны заранее, можно выбрать небольшое число спектральных зон, в которых они будут наиболее заметны. Так, например, ближний ИК-диапазон очень эффек­тивен в оценке состояния растительности, определении степени ее угнетения. Для большинства приложений достаточный объем информации дает многозональная съемка со спутников LANDSAT (США), SPOT (Франция), Ресурс-О (Россия). Для успешного проведения съемки в этом диапазоне длин волн необходимы солнечный свет и ясная погода.

Обычно оптическая съемка ведется либо сразу во всем видимом диапазоне (панхромати­ческая), либо в нескольких более узких зонах спектра (многозональная). При прочих равных условиях, панхроматические снимки обладают более высоким пространственным разрешением. Они наиболее пригодны для топографических задач и для уточнения границ объектов, выделяе­мых на многозональных снимках меньшего пространственного разрешения.

Тепловое ИК-излучение (рисунок 2) несет информацию, в основном, о температуре по­верхности. Помимо прямого определения температурных режимов видимых объектов и явлений (как природных, так и искусственных), тепловые снимки позволяют косвенно выявлять то, что скрыто под землей - подземные реки, трубопроводы и т.п. Поскольку тепловое излучение созда­ется самими объектами, для получения снимков не требуется солнечный свет (он даже, скорее, мешает). Такие снимки позволяют отслеживать динамику лесных пожаров, нефтяные и газовые факелы, процессы подземной эрозии. Следует отметить, что получение космических тепловых снимков высокого пространственного разрешения технически затруднительно, поэтому сегодня доступны снимки с разрешением около 100 м. Много полезной информации дает также тепловая съемка с самолетов.

Сантиметровый диапазон радиоволн используется для радарной съемки. Важнейшее преимущество снимков этого класса - в их всепогодности. Поскольку радар регистрирует собственное, отраженное земной поверхностью, излучение, для его работы не требуется солнечный
свет. Кроме того, радиоволны этого диапазона свободно проходят через сплошную облачность и даже способны проникать на некоторую глубину в почву. Отражение сантиметровых радиоволн от поверхности определяется ее текстурой («шероховатостью») и наличием на ней всевозможных пленок. Так, например, радары способны фиксировать наличие нефтяной пленки толщиной 50 мкм и более на поверхности водоемов даже при значительном волнении. В принципе, радарная съемка с самолетов способна обнаруживать подземные объекты, например, трубопроводы и утечки из них.

Радиометрическое разрешение определяет диапазон различимых на снимке яркостей. Большинство сенсоров обладают радиометрическим разрешением 6 или 8 бит, что наиболее близко к мгновенному динамическому диапазону зрения человека. Но есть сенсоры и с более вы­соким радиометрическим разрешением (10 бит для AVHRR и 11 бит для IKONOS), позволяющим различать больше деталей на очень ярких или очень темных областях снимка. Это важно в случа­ях съемки объектов, находящихся в тени, а также когда на снимке одновременно находятся большие водные поверхности и суша. Кроме того, такие сенсоры, как AVHRR имеют радиомет­рическую калибровку, что позволяет проводить точные количественные измерения.

Наконец, временное разрешение определяет, с какой периодичностью один и тот же сен­сор может снимать некоторый участок земной поверхности. Этот параметр весьма важен для мо­ниторинга чрезвычайных ситуаций и других быстро развивающихся явлений. Большинство спут­ников (точнее, их семейств) обеспечивают повторную съемку через несколько дней, некоторые - через несколько часов. В критических случаях для ежедневного наблюдения могут использовать­ся снимки с различных спутников, однако, нужно иметь в виду, что заказ и доставка сами по себе могут потребовать немалого времени. Одним из вариантов решения является приобретение при­емной станции, позволяющей принимать данные непосредственно со спутника. Это удобное ре­шение для ведения постоянного мониторинга используется некоторыми организациями на терри­тории России, обладающими приемными станциями данных со спутников Ресурс-О. Для отсле­живания изменений на какой-либо территории важна также возможность получения архивных (ретроспективных) снимков.

По высоте орбиты спутника можно выделить три группы: 1) Малые высоты : 100-500 км (пилотируемые корабли и орбитальные станции); 2) Средние высоты : 500-2000 км (ресурсные и метеорологические спутники); 3) Большие высоты : 36000-40000 км (геостационарные спутники - скорость движения спутника равна скорости вращения Земли - постоянное наблюдение за определенным районом на поверхности).

Положение орбиты по отношению к Солнцу. Для космических съемок большое значение имеет способность орбиты сохранять постоянную ориентацию на Солнце. Орбиты, у которых угол между плоскостью орбиты и направлением на Солнце остается постоянным, называются солнечно-синхронными. Достоинство таких орбит состоит в том, что они обеспечивают одинаковую освещенность земной поверхности вдоль трассы полета космического аппарата.