Пигменты в клетках растений. Лекция: Растительные пигменты. Описание сорта клематис Пиилу

· Хлорофилл – это зелёный пигмент, обуславливающий окраску зелёного цвета растению, при его участии обусловлен процесс фотосинтеза. По химическому строению это Mg-комплекс различных тетрапирролов. Хлорофиллы имеют порфириновое строение, структурно близки к гему.

В пиррольных группировках хлорофилла имеются системы, чередующихся двойных и простых связей. Это и есть хромофорная группа хлорофилла, обуславливающиеся поглощение определённых лучей солнечного спектра и его окраску. D порфировые ядра составляют 10 нм, а длина фитольного остатка 2 нм.

Молекулы хлорофилла полярно, её порфириновое ядро обладает гидрофильными свойствами, а фитольный конец гидрофобными. Это свойство молекулы хлорофилла обуславливают определённое расположение её в мембранах хлоропласта.

Порфириновая часть молекулы связана с белком, а фитольная часть погружена в липидный слой.

Хлорофилл живой интактной клетки обладает способностью к обратимому фотоокислению и фотовосстановлению. Способность к окислительно-восстановительным реакциям связано с наличием в молекуле хлорофилла сопряжённых двойных связей с подвижными п-элктронами и атомами N с неопределёнными электронами.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ

1) избирательно поглощать энергию света,

2) запасать ее в виде энергии электронного возбуждения,

3) фотохимически преобразовывать энергию возбужденного состояния в химическую энергию первичных фотовосстановленных и фотоокисленных соединений.

· Каротиноиды- это жирорастворимые пигменты желтого, оранжевого, красного цвета - присутствуют в хлоропластах всех растений. Каротиноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Каротиноиды имеют максимальное поглощение в фиолетово-синей и синей частях спектра света. Они не способны к флуоресценции в отличие от хлорофилла.

К каротиноидам относятся 3 группы соединения:

Оранжевые, или красные каротины;

Жёлтые ксантофиллы;

Каротиноидные кислоты.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ

1) Поглощение света в качестве дополнительных пигментов;

2) Защита молекул хлорофилла от необратимого фотоокисления;

3) Тушение активных радикалов;

4) Участвуют в фототропизме, т.к. способствуют направлению роста побега.

· Фикобилины – это красные и синие пигменты, содержащиеся у цианобактерий и некоторых водорослей. Фикобилины состоят из 4-х последовательных пиррольных колец. Фикобилины являются хромофорными группами глобулиновых белков, который называется фикобилинпротеинами. Он делятся на:

- фикоэритрины – белки красного цвета;

- фикоцианин – синеголубые белки;

- алофикоцианин – синие белки.

Все они обладают флуоресценирущей способностью. Фикобилины имею максимальное поглощение в оранжевых, жёлтых и зелёных частях спектра света и позволяют водорослям полнее использовать свет, проникающий в воду.

На глубине 30 м полностью исчезают красные лучи

На глубине 180 м – жёлтые

На глубине 320 м – зелёные

На глубине более 500 м не проникают синие и фиолетовые лучи.

Фикобилины – это дополнительные пигменты примерно 90% энергии света, поглощающего фикобилинами передаётся на хлорофилл.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ

1) Максимумы поглощения света у фикобилинов находятся между двумя максимумами поглощения у хлорофилла: в оранжевой, желтой и зеленой частях спектр.

2) Фикобилины выполняют у водорослей функции светособирающего комплекса.

3) У растений имеется фикобилин-фитохрм, он не участвет в фотосинтезе, но является фоторецептором красного света и выполняет регуляторную функцию в клетках растений.

Сущность фотофизического этапа. Фотохимический этап. Циклический и нециклический транспорт электронов.

Сущность фотофизического этапа

Фотофизический этап наиболее важный, т.к. осуществляет переход и преобразование энергии одной системы в другую (в живую из неживой).

Фотофизический этап входит в световую фазу фотосинтеза.

Фотофизический этап начинается с поглощения квантов света, электроны атомов входящих в состав пигментов. В первую очередь кванты света будут поглощаться наиболее подвижными электронами в молекуле хлорофилла, т.е. теми, которые слабее удерживаются ядром. Такими подвижными электронами в молекуле хлорофилла являются делокализованные p-электроны двойных связей, орбитали которых обобщены между двумя ядрами и неспаренными электронами атомов N2 и О2 в порфириновом ядре. Именно с этим связано то, что молекулы хлорофилла – две основные линии поглощения (в красной и сине-фиолетовой). Из возбужденного первого синглетного и триплетного состояния, молекула хлорофилла так же может переходить в основное состояние, при этом ее дезактивация (потеря энергии) может проходить:

1) Путем выделения энергии в виде света или тепла

2) Путем переноса энергии на другую молекулу пигмента

3) Путем затрачивания энергии на фотохимические процессы (потеря электрона и присоединение его к акцептору, с образованием АТФ и НАДФН2)

В любом из указанных случаев молекула пигмента дезактивируется и переходит на основной энергетический уровень.

Рассмотрение энергетических сотояний молекулы хлорофилла и различных путей использования энергии электронного возбуждения, указывает, что магнийпорфирин одновременно обладает способностью поглощать и сохранять энергию в виде энергии электронного возбуждения и способностью к окислительно-восстановительным изменениям. Возбужденная молекула хлорофилла – мощный восстановительный агент, играющий решающую роль в образовании высоковосстановленных кофакторов в реакциях фотосинтеза. Хлорофилл имеет две функции: поглощение и передача энергии. Основная часть молекул хлорофилла (свето-собирающий комплекс) только поглощает свет и переносит энергию возбуждения на особые молекулы хлорофилла которые непосредственно учувствуют в фото-химическом процессе. Энергия квантов света улавливается от 200 до 400 молекул антенного хлорофилла свето-собирающего комплекса и как-бы стекается к одной молекуле – ловушке, входящая в реакционный центр.

В улавливании и передачи энергии на молекулу хлорофилла-ловушки могут участвовать не только молекулы хлорофилла но и каратиноиды и фикобилины. Передача энергии между молекулами пигментов идет главным образом резонансным путем без разделения зарядов с большой скоростью, передача энергии происходит от пигментов поглощающих свет с меньшей длинной волны, к пигментам поглощающим свет с большей длинной волны. Потеря энергии приводит к превращению квантов более мелкие с большей длинной волны, поэтому основные формы хлорофилла к которым стекается энергия, является более длинноволновые, обратный перенос энергии невозможен.

Фотофизический этап заключается в том , что кванты света поглощаются и переводят молекулы пигмента в возбужденное состояние, затем эта энергия приносится на хлорофилл-ловушку входящую в реакционный центр, осуществляющий первичные фото-химические реакции – разделение зарядов.

Фотохимический этап

Фото-химически реакции фотосинтеза – это реакции в которых энергия света преобразуется в энергию химических связей в первую очередь в энергию фосфорных связей АТФ . Именно АТФ обеспечивает течение всех процессов, одновременно под действием света происходит разложение воды, образуется восстановленный НАДФ и выделяется О2 .

Энергия поглощенных квантов света стекается от сотен молекул пигментов свето-собирающего комплекса к одной молекула-хлорофилла-ловушке отдавая электрон акцептору – окисляется. Электрон поступает в электронно-транспортную цепь, предполагается, что свето-собирающий комплекс состоит из 3-х частей:

· главного антенного компонента

· двух фото фиксирующих систем.

Комплекс антенного хлорофилла погружен в толщу мембраны тилакоидов хлоропластов совокупность антенных молекул пигментов и реакционного центра составляет фотосистему в процессе фотосинтеза принимает участие 2 фотосистемы:

· установленно, что фотосистема 1 включает светофокусирующие пигменты и реакционный центр 1 ,

· фотосистема 2 включает светофокусирующие пигменты и реакционный центр 2 .

Хлорофилл-ловушка фотосистемы 1 поглощает свет с длинной волны700нм . Во второй системе 680нм . Свет поглащается рздельно этими двумя фотосистемами и нормальное осуществление фотосинтеза требует их одновременного участия. Перенос по цепи переносчиков включает ряд окислительно-восстновительных реакций при которых происходит перенос либо атома водорода, либо электронов.

Различают два типа потока электронов:

· циклический

· нециклический.

При циклическом потоке электроны от молекулы хлорофилла передаются к акцептору от молекулы хлорофилла и возвращаются к ней обратно , при нециклическом потоке происходит фотоокисление воды и передача электрона от воды к НАДФ , выделяемая в ходе окислительно-восстановительных реакций энергия частично используется на синтез АТФ.

Фотосистема I

Светособирающий комплекс I содержит примерно 200 молекул хлорофилла.

В реакционном центре первой фотосистемы находится димер хлорофилла a с максимумом поглощения при 700 нм (П700). После возбуждения квантом света он восстанавливает первичный акцептор - хлорофилл a, тот - вторичный (витамин K 1 или филлохинон), после чего электрон передаётся на ферредоксин, который и восстанавливает НАДФ с помощью фермента ферредоксин-НАДФ-редуктазы.

Белок пластоцианин, восстановленный в b 6 f комплексе, транспортируется к реакционному центру первой фотосистемы со стороны внутритилакоидного пространства и передаёт электрон на окисленный П700.

Фотосистема II

Фотосистема - совокупность ССК, фотохимического реакционного центра и переносчиков электрона. Светособирающий комплекс II содержит 200 молекул хлорофилла a, 100 молекул хлорофилла b, 50 молекул каротиноидов и 2 молекулы феофитина. Реакционный центр фотосистемы II представляет собой пигмент-белковый комплекс, расположенный в тилакоидных мембранах и окружённый ССК. В нём находится димер хлорофилла a с максимумом поглощения при 680 нм (П680). На него в конечном счёте передаётся энергия кванта света из ССК, в результате чего один из электронов переходит на более высокое энергетическое состояние, связь его с ядром ослабляется и возбуждённая молекула П680 становится сильным восстановителем (E0=-0,7 В).

П680 восстанавливает феофитин, в дальнейшем электрон переносится на хиноны, входящие в состав ФС II и далее на пластохиноны, транспортируемые в восстановленной форме к b6f комплексу. Одна молекула пластохинона переносит 2 электрона и 2 протона, которые берутся из стромы.

Заполнение электронной вакансии в молекуле П680 происходит за счёт воды. В состав ФС II входит водоокисляющий комплекс, содержащий в активном центре ионы марганца в количестве 4 штук. Для образования одной молекулы кислорода требуется две молекулы воды, дающие 4 электрона. Поэтому процесс проводится в 4 такта и для его полного осуществления требуется 4 кванта света. Комплекс находится со стороны внутритилакоидного пространства и полученные 4 протона выбрасываются в него.

Таким образом, суммарный результат работы ФС II - это окисление 2 молекул воды с помощью 4 квантов света с образованием 4 протонов во внутритилакоидном пространстве и 2 восстановленных пластохинонов в мембране.

Фотосинтетическое фосфорилирование. Механизм сопряжения электронного транспорта с формированием трансмембранного градиента электрохимического потенциала. Структурно-функциональная организация и механизм работы АТФ-синтетазного комплекса.

Фотосинтетическое фосфорилирование - синтез АТФ из АДФ и неорганического фосфора в хлоропластах, сопряженный с транспортом электронов, индуцируемым светом.

Соответственно двум типам потока электронов различают циклическое и нециклическое фотофосфорилирование.

Перенос электронов по цепи циклического потока сопряжен с синтезом двух макроэргичесих связей АТФ. Вся энергия света, поглощенная пигментом реакционного центра фотосистемы I, расходуется только на синтез АТФ. При циклическом Ф. ф. не образуются восстановительные эквиваленты для углеродного цикла и не выделяется O2. Циклическое Ф. ф. описывается уравнением:

Нециклическое Ф. ф. сопряжено с потоком электронов от воды через переносчики фотосистем I и II НАДФ +. Энергия света в этом процессе запасается в макроэргических связях АТФ, восстановленной форме НАДФН2 и молекулярном кислороде. Суммарное уравнение нециклического Ф. ф. следующее:

Механизм сопряжения электронного транспорта с формированием трансмембранного градиента электрохимического потенциала

Хемиосмотическая теория. Переносчики электронов локализованы в мембранах асимметрично. При этом последовательно чередуются переносчики электронов (цитохромы) с переносчиками электрона и протона (пластохиноны). Молекула пластохинона сначала принимает два электрона: ПХ + 2е - -> ПХ -2 .

Пластохинон - производное хинона, в полностью окисленном состоянии содержит два атома кислорода, соединенных с углеродным кольцом двойными связями. В полностью восстановленном состоянии атомы кислорода в бензольном кольце соединяются с протонами: с образованием электрически нейтральной формы: ПХ -2 + 2Н + -> ПХН 2 . Протоны выделяются в пространство внутри тилакоида. Таким образом, при переносе пары электронов от Хл 680 на Хл 700 во внутреннем пространстве тилакоидов накапливаются протоны. В результате активного переноса протонов из стромы во внутритилакоидное пространство на мембране создается электрохимический потенциал водорода (ΔμН +), имеющий две составляющие: химическую ΔμН (концентрационную), возникающую в результате неравномерного распределения ионов Н + по разным сторонам мембраны, и электрическую, обусловленную противоположным зарядом разных сторон мембраны (благодаря накоплению протонов с внутренней стороны мембраны).

__________________________________________________________________________

Структурно-функциональная организация и механизм работы АТФ-синтетазного комплекса

Структурно-функциональная организация. Сопряжение диффузии протонов через мембрану осуществляется макромолекулярным ферментным комплексом, называемым АТФ-синтазой или сопрягающим фактором . Этот комплекс по форме напоминает гриб и состоит из двух частей - факторов сопряжения: круглой шляпки F 1 , выступающей с наружной стороны мембраны (в ней располагается каталитический центр фермента), и ножки погруженной в мембрану. Мембранная часть состоит из полипептидных субъединиц и формирует в мембране протонный канал, по которому ионы водорода попадают к фактору сопряжения F 1 . Белок F 1 представляет белковый комплекс, который состоит из мембраны, при этом он сохраняет способность катализировать гидролиз АТФ. Изолированный F 1 не способен синтезировать АТФ. Способность синтезировать АТФ - это свойство единого комплекса F 0 -F 1 , встроенного в мембрану. Связано это с тем, что работа АТФ-синтазы при синтезе АТФ сопряжена с переносом через нее протонов. Направленный транспорт протонов возможен только в том случае, если АТФ-синтаза встроена в мембрану.

Механизм работы. Существуют две гипотезы относительно механизма фосфорилирования (прямой механизм и косвенный). Согласно первой гипотезе фосфатная группа и АДФ связываются с ферментом в активном участке комплекса F1. Два протона перемещаются через канал по градиенту концентрации и соединяются с кислородом фосфата, образуя воду. Согласно второй гипотезе, (косвенный механизм), АДФ и неорганический фосфор соединяются в активном центре фермента спонтанно. Однако образовавшаяся АТФ прочно связана с ферментом, и для ее освобождения требуется энергия. Энергия доставляется протонами, которые, связываясь с ферментом, изменяют его конформацию, после чего АТФ высвобождается.

Ароматические вещества.

Характерный вкус и запах придает фруктам и овощам широкая палитра химически разнородных веществ, присутствующих в них в очень малых концентрациях. Среди ароматических веществ во фруктах чаще всего встречаются эфирномасляничные кислоты, альдегиды, спирты и терпеновые вещества. Большинство этих соединений имеют очень низкую точку кипения, что при выпаривании материала приводит к их испарению в первую очередь из водного содержания и фруктовая масса теряет ценные вкусовые качества. В промышленном технологическом процессе сегодня все больше расширяется консервирование ароматических веществ, которые на конечной стадии обработки возвращаются обратно в продукты.

Витамины

Витамины являются веществами различного химического строения, которые в незаметных концентрациях производят в живых организмах значительное действие. Являются для человека совершенно незаменимыми, и так как человеческий организм не может сам их синтезировать, он должен их принимать в продуктах - или в готовой форме или как провитамины. В доказательство этого приведена таблица 3, из которой видно, что фрукты и овощи являются их богатыми источниками (исключая витамин D). То обстоятельство, что большая часть веществ чувствительна к окислению, к воздействию высокой температуры и к выщелачиванию, обязывает нас вовремя и очень бережно обрабатывать продукты для консервирования.

Витамины подразделяются на растворимые в масляных растворах, к ним относятся витамины A, D, E и K и на растворимые в воде - витамины группы B и витамин С.

Ферменты

Ферменты - это такие вещества, которые катализируют (т.е. специфически ускоряют) биохимические реакции как в живых организмах, так и в мертвых, например, в собранном урожае. Из большого количества ферментов нас будут интересовать только те, которые находятся в сырье для консервирования. К ним принадлежат, прежде всего, ферменты класса оксиредуктаз (L-аскорбиназа, пероксидаза, фенолоксидаза и другие), которые во фруктах и овощах катализируют (ускоряют) окислительно-востановительные реакции. В сырье, собранном для консервирования, дыхательные процессы не прекращаются, а находятся в равновесии, что не дает происходить явным изменениям вещества. Но любое механическое мероприятие, например, резание, чистка, измельчение, помол материала приводят к дезорганизации ферментативной системы, разрушению витамина С и других веществ и вследствие окисления некоторых органических материалов приводят к окрашиванию в коричневый цвет. В некоторых случаях можно предотвратить такие изменения сырья при домашнем консервировании. Другая интересная для нас группа ферментов - это пектолитические ферменты, которые постепенно отнимают пектиновые вещества от пектоцеллюлоз и через протопектины переходят собственно в пектин с сокращенной молекулярной цепью. Пектолитические ферменты могут быть опасными, например, при несвоевременной стерилизации сырья, залитого горячей водой. Примерная температура обработки изделий составляет 35-40 oC, что близко к оптимальной для деятельности ферментов. Вследствие этого может произойти быстрое разложение пектиновых веществ, что приведет к нежелательному размягчению фруктов в компоте или стерилизованных овощей. Другие последствия может иметь продление обработки размолотых фруктов, предназначенных для приготовления мармелада. Пектиновые вещества при этом распадаются на пектины с короткой молекулой, которые имеют меньшую желеобразующую способность, что, кроме побурения продуктов, приводит еще к тому, что не будет происходить желеобразование.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Заключение

Список используемой литературы

Введение

Среди пигментов в растительном мире наиболее распространен антоциан. Он принадлежит к безазотистым соединениям, близким к глюкозидам, и в растворенном состоянии (редко кристаллическом) входит в состав клеточного сока. В составе антоциана - глюкоза и различные антоцианидины с присоединением либо щелочного вещества (тогда антоциан синий), либо кислого (тогда антоциан краснеет). В зависимости от реакций, какие он претерпевает в клеточном соке с солями, кислотами, дубильными веществами, он придает различную окраску клеточному соку.

Необычное разнообразие окраски цветков у растений, а также листьев связано чаще всего с антоцианом. Красные маки, покрывающие весенние степи Средней Азии, темно-лиловые генцианы на субальпийских лугах Кавказа, красные головки клевера, синие васильки, красные розы- все это богатство расцветок создается антоцианом. Окраска красных и лиловых плодов вишни, черешни, сливы, яблони, ежевики, винограда и пр. также объясняется наличием антоциана. Черные семена фасоли, гороха содержат в клетках и под кожицей фиолетовый антоциан.

1. Антоцианы - красящие вещества в клетках растений

Поэтому в соцветиях медуницы лекарственной можно одновременно найти полураспустившиеся цветки с розоватым венчиком, расцветшие - пурпуровой окраски и уже отцветающие - синего цвета. Это обусловлено тем, что в бутонах клеточный сок имеет кислую реакцию, которая по мере распускания цветков переходит в нейтральную, а потом и в щелочную. Подобные изменения окраски лепестков наблюдаются и у цветков жасмина комнатного, незабудки болотной, синюхи голубой, льна обыкновенного, цикория обыкновенного и сочевичника весеннего. Возможно, такие "возрастные" явления в цветке частично связаны и с процессом его оплодотворения. Имеются сведения, что насекомые-опылители у медуницы посещают только расцветшие розовые и пурпурные цветки. Но только ли окраска венчика при этом служит для них ориентиром?

Разнообразие окраски цветков зависит от числа гидроксильных групп в молекулах антоцианов: с их увеличением окраска становится более синей (из-за наличия дельфинидина). При метилировании гидроксилов образуется пигмент мальвидин, придающий лепесткам красный цвет. Расцветка венчиков обусловливается и соединениями антоцианов с ионами различных металлов. Так, например, соли магния и кальция способствуют преобладанию синей окраски, а соли калия - пурпурной. Определенное разнообразие оттенков вносит и дополнительное присутствие желтых пигментов (халконов, флавонолов, флавонов, ауронов и т. п.).

Естественные красители содержатся не только в цветках, но и в других частях растений, играя многостороннюю роль. Взять хотя бы не бросающуюся в глаза окраску клубней картофеля. У клубней картофеля различная окраска кожуры, глазков, проростков и мякоти также зависит от содержания в них фенольных соединений, иначе называемых биофлавоноидами. Они имеют разнообразную гамму красок: белую, желтую, розовую, красную, синюю, темно-фиолетовую и даже черную. Картофель с черной окраской кожуры клубней растет на его родине на острове Чилоэ. Различная окраска картофельной кожуры и мякоти зависит от содержащихся в них следующих биофлавоноидов: белая - от бесцветных лейкоантоцианов или катехинов, желтая - от флавонов и флавоноидов, красная и фиолетовая - от антоцианов. Группа антоцианов наиболее многочисленна, насчитывает около 10 видов. В нее входят и дающие пурпурный и розовый цвета пионидин, пеларгонидин и мальвидин, и окрашивающие в синий цвет цианидин и дельфинидин, и бесцветный пигмент петунидин. Установлено, что окрашенные клубни картофеля, как правило, богаче необходимыми для нашего организма веществами. Так, например, клубни с желтой мякотью имеют повышенное содержание жира, каротиноидов, рибофлавина и комплекса флавоноидов.

За счет способности антоцианов менять свою окраску можно наблюдать изменение цвета клубней картофеля в зависимости от состояния погоды, интенсивности освещения, реакции почвенной среды, применения минеральных удобрений и ядохимикатов. При выращивании картофеля на торфяных почвах, например, клубни часто имеют синеватый оттенок, при внесении фосфорного удобрения они бывают белыми, сульфат калия может придать им розовый цвет. Окраска клубней нередко меняется и под влиянием ядохимикатов, содержащих медь, железо, серу, фосфор и другие элементы.

Сказочная осенняя окраска листьев с оранжевыми, красно-бурыми и красными оттенками тоже зависит от содержания в их клеточном соке антоцианов. Наиболее активному процессу их образования в этот период способствуют понижение температуры, яркое освещение и задержка по этим причинам в листве питательных веществ, особенно сахаров.

Искусственно ускорить образование антоцианов в листьях калины обыкновенной, черемухи обыкновенной, осины, бересклета бородавчатого или клена платановидного можно следующим путем. Весной на одной из их ветвей посередине ее длины снимают кольцо коры шириной в 2-2,5 см. Это приведет к усиленному накоплению углеводов в изолированной верхней части ветви и вызовет здесь более раннее и интенсивное покраснение листьев, чем ниже кольца или на неповрежденных ветвях.

Полагаем, что если уважаемый читатель пожелает повторить этот опыт, то постарается выполнить его с надлежащей аккуратностью и бережным отношением к живому дереву - нашему верному другу.

Антоцианы в клетках растений выполняют не только роль вещества, придающего их тканям яркую привлекательную окраску. Оказывается, что эти пигменты, появляющиеся в листьях и стеблях при воздействии пониженных температур, в ранневесенний и осенний периоды служат своего рода "ловушкой" солнечных лучей, избирательно работающим фильтром. В молодых побегах и листьях бузины красной, пырея ползучего, ржи озимой, лисохвоста лугового, мятлика лугового и некоторых других растений антоцианы ранней весной превращают световую энергию в тепловую и защищают их от холода.

Наблюдения свидетельствуют также о том, что фиолетовая окраска семян, листьев и стеблей у растений является индикатором на содержание в них легкоферментируемых углеводов - сахарозы, фруктозы и глюкозы, в значительной степени обусловливающих холодостойкость растений. По этому характерному показателю (тесту) в перспективе можно будет оперативно вести предварительный отбор на морозоустойчивость и повышенное содержание сахаров, что особенно необходимо при выведении новых сортов многолетних кормовых трав.

В листьях липы мелколистной, березы повислой, вяза шершавого вместо антоцианов в основном содержатся каротиноиды (каротины и ксантофиллы). В этом случае перед листопадом после разрушения хлорофилла листья приобретают золотисто-желтую окраску.

Следовательно, багряные оттенки, в которые окрашиваются многие наши деревья перед листопадом, не играют какой-либо особой физиологической роли, а являются лишь показателем затухания процесса фотосинтеза, предвестником наступления периода зимнего покоя растений.

Откуда же осенью появляются антоциан и ксантофилл? Оказывается, что в зеленых листьях деревьев с самого начала их жизни одновременно содержатся и хлорофилл, и антоциан (или ксантофилл). Однако антоциан и ксантофилл имеют менее интенсивную плотность окраски, поэтому они становятся заметными только после того, как под воздействием определенных условий окружающей среды произойдет разрушение зерен хлорофилла. В ноябре - декабре, когда образование хлорофилла сдерживается недостатком солнечного света и его неполным спектром, у комнатных роз молодые побеги и распускающиеся листья имеют ярко-красный цвет. При ярком солнечном освещении они сразу стали бы зелеными.

У некоторых растений изменение зеленой окраски листьев на красную носит обратимый характер. Наглядным примером этого является поведение многих видов алоэ, культивируемых в комнатных условиях. Зимой и ранней весной, пока солнечный свет еще сравнительно слаб, они окрашены в зеленый цвет. Но если эти растения в июне или июле выставить на яркое солнечное освещение, их листья станут красно-бурыми. Перенесение же растений в затененное место снова обеспечит быстрое возвращение листьям зеленой окраски.

Желтая окраска цветков происходит от содержащихся в них флавонов (каротина, ксантофилла и антохлора), которые в соединении со щелочами дают довольно широкий спектр оттенков от ярко-оранжевого до бледно-желтого.

Среди многообразия красок в растительном мире довольно значительное место занимает белый цвет. Но для того чтобы его создать, обычно не нужно никакого красящего вещества. Он обусловлен наличием воздуха в межклеточных пространствах растительных тканей, который полностью отражает свет, благодаря чему лепестки цветка кажутся белыми. Это можно наблюдать на примере цветущих растений нивяника обыкновенного, кувшинки белой, ландыша майского и др. За счет плотного опушения белую окраску имеют и растения эдельвейса альпийского, сушеницы топяной, жабника полевого, мать-и-мачехи. Содержащийся в омертвевших волосках воздух также в результате отражения света делает их опушенную поверхность белой. А белая окраска березовой коры, придающая в любое время года стволам березы нарядный вид, обусловливается наполняющими клетки перидермы снежно-белыми нитевидными кристаллами бетулина ("березовой камфоры").

2. Роль красящих веществ в жизни растений

Весь процесс, обеспечивающий создание в растениях различных цветов, на первый взгляд может представиться весьма простым. Однако существующие в природе многочисленные расцветки и тона являются результатом сложного взаимодействия основных пигментов в различных сочетаниях со средой. Зависят они и от порядка размещения естественных красителей в растительных тканях.

Современными исследованиями установлено, что естественные красители (в основном из группы фенолов), содержащиеся в различных частях растений, играют большую роль в их жизни.

Чашечковидные венчики цветков у горных и арктических растений действуют как своеобразные вогнутые собирательные зеркала - рефлекторы, концентрируя солнечный свет в центре цветка, где температура может превышать температуру окружающей среды на 6...8 градусов Цельсия. Поворачиваясь постоянно в течение светового дня к солнцу, цветки максимально используют его энергию. А с наступлением сумерек, закрывая венчик или наклоняя цветок книзу, растение создает благоприятные условия для наилучшей сохранности аккумулированной энергии.

Высокая концентрация пигментов способствует и защите наследственного аппарата растений от мутагенных воздействий.

Окраска растений полезна и для их защиты от избытка солнечного света. Поэтому в горной местности с увеличением высоты цветки имеют более яркую и плотную окраску. В этом отношении наибольшее значение имеет пигмент - меланин. Благодаря особенностям своей структуры он как бы является "молекулярным ситом", в ячейках которого застревают и обезвреживаются радикалы, образуемые под действием ультрафиолетовых лучей. Штаммы микроорганизмов, содержащие меланин, настолько приобретают устойчивость к ультрафиолетовому облучению и действию космических лучей, что живут и размножаются в высоких слоях атмосферы, в горах, в пустынях, в Арктике и Антарктике, т. е. там, где их неокрашенные родичи гибнут. Наличие меланина в оболочках клеток, спор и гиф грибов надежно защищает микроорганизмы от воздействия на них ферментов, выделяемых микробами-антагонистами.

У бактерий и грибов имеются и другие пигменты. Азотфиксирующие бактерии синтезируют, например, пигменты из фенолокислот (З,4-диоксибензойной) и аминокислот (аланина и серина). Встречаются пигменты, производные бензо-, нафто- и антрахинона, сходные по свойствам с меланином.

3. Использование людьми действия растительных пигментов

Различная окраска растений неодинаково влияет на наш организм, так как каждый цвет спектра имеет свою длину волны. Наиболее короткие волны фиолетового, синего, голубого и зеленого цветов, являясь холодными (пассивными), действуют на нервную систему успокаивающе, способствуют отдыху. Цветки с лепестками красного, оранжевого и желтого колеров, имеющих более длинные волны, считаются теплыми, активными; они возбуждают организм, повышают его тонус и работоспособность. Цветки желтой окраски не случайно называют "земным солнцем". В зависимости от их оттенков наш организм может приходить в состояние возбуждения или, наоборот, успокаиваться. Белый и черный цвета относятся к нейтральным.

Эти обстоятельства свидетельствуют о том, что в режиме труда и отдыха настроением человека в значительной мере можно управлять, создавая определенную цветовую гамму фитодизайна. Так, например, растения с ярко-красными цветками (гвоздики, пионы, тюльпаны, гладиолусы, розы), оказывающие возбуждающее действие, желательно иметь в служебных помещениях (для профилактики утомления), в кафе, столовых, ресторанах, при проведении торжественных совещаний и других массовых мероприятий. Возбуждающий (бодрящий) эффект создают также растения фиолетового и пурпурного цветов. Цветовая гамма ярко-красного, пурпурного и фиолетового колеров повышает нервно-психический тонус и работоспособность, увеличивает напряжение мышц, способствует ускорению ритма дыхания и усилению кровообращения.

Для предотвращения меланхолического настроения используют растения с цветками розовой окраски (бальзамин, азалия, деклитра, розы, астры, левкои, пеларгония, гортензия, фуксия). При депрессии, вялости, плохом аппетите рекомендуется вводить в интерьеры растения с оранжевыми цветками (кальцеолярия, бархатцы, календула, настурция, монбреция). При напряженной умственной, зрительной работе полезно иметь в помещении цветущие растения желтой и золотистой окраски (хризантемы, рудбекия, анютины глазки, примула, нарциссы, лантана камара), так как среди других цветов солнечного спектра желтый наиболее спокойно воспринимается нашим глазом, не вызывая его утомления, способствует поддержанию тонуса и бодрого настроения. Зеленый цвет растений оказывает положительное воздействие на организм человека благодаря улучшению кровообращения и нормализации кровяного давления. Он, как и желтый цвет, является физиологически оптимальным и самым привычным для зрительного восприятия. Эти предпосылки подтверждают целесообразность культивирования в комнатных условиях наряду с цветущими растениями декоративных вечнозеленых растений.

Для отдыха организма, сопровождаемого торможением функции нервной системы, снижением напряжения мышц, замедлением ритма дыхания, урежением пульса и снижением кровяного давления, в фойе театров, залах ожидания вокзалов, приемных и вестибюлях административных зданий желательно иметь растения с цветками голубой и синей успокаивающей окраски (незабудки, анютины глазки, васильки, колокольчики, глоксиния, ирисы, дельфиниум, аквилегия).

Оригинальные наблюдения психологов показали, что восприятие цветов людьми неодинаково. Женщины, например, преимущественно предпочитают цветущие растения красной окраски, мужчины - голубой. У детей вкусы меняются: в 4-9-летнем возрасте наибольшее впечатление на них производят розовый, карминовый и пурпурный цвета; в 10-12 лет они считают любимыми зеленый, желтый и красный цвета; в 13-16 лет - синий, оранжевый и зеленый, а к 17-19 годам кумиром становится тонизирующая красно-оранжевая расцветка.

4. Другие растительные пигменты

Из желтых пигментов в клеточном соке довольно обычен антохлор, который встречается в цветках, например, лядвенца, желтого мака, георгина, коровяка, льнянки, а также в плодах некоторых цитрусовых, реже - в лепестках львиного зева. В клеточном соке имеется ряд других пигментов. В клетках бывают разнообразные кристаллы: они образуются в цитоплазме и попадают в вакуоли. Очень распространены кристаллы щавелевокислой извести. Эти образования содержаться в вакуолях клеток многих растений. Они легко растворяются в соляной кислоте. Роль их в клетках не выяснена.

Помимо одиночных кристаллов, встречаются рафиды - пучки игловидных кристаллов (у многих однодольных растений, например в листьях гиацинта, американской агавы, в паренхиме чемерицы и пр.), друзы, имеющие вид «хрустальных» сростков кристаллов и встречающиеся в клетках паренхимной ткани листьев и стеблей многочисленных растений. Под микроскопом друза ярко блестит. Иногда друзы блокируют ядро клетки, и она становится безъядерной (у рододендрона).

Заключение

Широко распространенными в растительном мире красящими веществами являются антоцианы. В отличие от хлорофилла они не связаны внутри клетки с пластидными образованиями, а чаще всего растворены в клеточном соке, иногда встречаются в виде мелких кристаллов. Антоцианы легко извлечь из любых синих или красных частей растения. Если, к примеру, прокипятить нарезанный корнеплод столовой свеклы или листья краснокочанной капусты в небольшом количестве воды, то скоро она окрасится от антоциана в лиловый или грязно-красный цвет. Но достаточно к этому раствору прибавить несколько капель уксусной, лимонной, щавелевой или любой другой кислоты, как он сразу же примет интенсивную красную окраску. Присутствие антоцианов в клеточном соке растений придает цветкам колокольчиков синий цвет, фиалок - фиолетовый, незабудок - небесно-голубой, тюльпанов, пионов, роз, георгинов - красный, а цветкам гвоздик, флоксов, гладиолусов - розовый. Почему же этот краситель является таким многоликим? Дело в том, что антоциан в зависимости от того, в какой среде он находится (в кислой, нейтральной или щелочной), способен быстро изменять свой оттенок. Соединения антоциана с кислотами имеют красный или розовый цвет, в нейтральной среде - фиолетовый, а в щелочной - синий.

Поэтому в соцветиях медуницы лекарственной можно одновременно найти полураспустившиеся цветки с розоватым венчиком, расцветшие - пурпуровой окраски и уже отцветающие - синего цвета. Это обусловлено тем, что в бутонах клеточный сок имеет кислую реакцию, которая по мере распускания цветков переходит в нейтральную, а потом и в щелочную. Подобные изменения окраски лепестков наблюдаются и у цветков жасмина комнатного, незабудки болотной, синюхи голубой, льна обыкновенного, цикория обыкновенного и сочевичника весеннего. Возможно, такие "возрастные" явления в цветке частично связаны и с процессом его оплодотворения. Имеются сведения, что насекомые-опылители у медуницы посещают только расцветшие розовые и пурпурные цветки.

Наличие в клетках растений красящих веществ помогает им наиболее эффективно поглощать и использовать солнечные лучи. Все пигменты растений представляют собой избирательно работающие физико-химические фильтры - ловушки солнечного света. Если хлорофилл листьев поглощает только красные и сине-фиолетовые лучи, используемые в процессе фотосинтеза для образования сложных органических соединений из простых минеральных веществ почвы и воздуха, то ярко-окрашенные цветки, благодаря содержанию в них разнообразных пигментов, улавливают лучи иной длины волны и превращают их в другие формы энергии. Эти формы энергии используются растениями для созревания пыльцы и яйцеклеток, синтеза ароматических веществ, повышения температуры в органах размножения, что ускоряет течение обменных процессов.

С давних пор люди используют защитное и лекарственное действие растительных пигментов. Известно, что они оказывают многостороннее благотворное влияние на организм человека, укрепляя сосудистую систему и улучшая состав крови за счет участия в синтезе галактоуроновой кислоты. Пигменты обладают противовирусными, бактерицидными и противовоспалительными свойствами. Конденсаты биофлавоноидов (меланины) способны обезвреживать ионизирующие излучения. Антоцианы, в состав которых входит активная цианистая группа, являются сердечными стимуляторами.

Особенность полифенольных веществ - растительных пигментов - заключается в том, что они всегда действуют совместно с аскорбиновой кислотой. Аскорбиновая кислота защищает фенольные соединения от окисления, а фенольные вещества, в свою очередь, предохраняют от разрушения аскорбиновую кислоту, крайне необходимую растениям. Если, например, в 100 г картофельного сока внести всего 25 мг аскорбиновой кислоты, он не будет темнеть в течение нескольких часов.

Растительные пигменты нетоксичны, обладают ценными антиокислительными и Р-витаминными свойствами, благодаря чему их целесообразно широко использовать в качестве пищевых красителей вместо ранее применявшихся синтетических веществ, сейчас признанных небезвредными.

антоциан пигмент красящий растение

Список используемой литературы:

1. Беликов П.С. Физиология растений: Учебное пособие. / П.С. Беликов, Г.А. Дмитриева. - М.: Изд-во РУДН, 2002. - 248 с.

2. Веретенников А.В. Физиология растений; Учебник.-/А.В.Веретенников. -М.: Академический Проект. 2006. - 480 с.

3. Кретович В.Л. Биохимия растений /В.Л. Кретович. - М.: Высшая школа, 2000. - 445 с.

4. Кузнецов В.В. Физиология растений / В.В. Кузнецов, Г.А. Дмитриева. - М.: Высшая школа, 2005. - 736 с.

5. Курсанов А.Л. Транспорт ассимилятов в растении /А.Л. Курсанов. - М.: Наука, 1999. - 648 с

6. Лебедев С.И. Физиология растений / С.И. Лебедев. - М.: Колос, 2008. - 544 с.

7. Либберт Э. Физиология растений / Э. Либберт. - М.: Мир, 2006. - 580 с.

8. Медведев, С.С. Физиология растений: Учебник. / С.С. Медведев. - СПб.: Изд-во Санкт-Петерб. ун-та, 2004. - 336 с.

9. Плешков Б.П. Биохимия сельскохозяйственных растений / Б.П. Плешков. - М.: Агропромиздат, 2007. - 494 с.

10. Полевой В.В. Физиология растений / В.В. Полевой. - М.: Высшая школа, 2006. - 464 с.

Размещено на Allbest.ru

Подобные документы

    Нуклеиновые кислоты, их структура, функциональные группы. Осмотическое давление различных клеток и тканей растения. Роль пигментов в жизни растений. Биосинтез углеводов, ферменты углеводного обмена. Роль аденозинтрифосфорной кислоты в обмене веществ.

    контрольная работа , добавлен 12.07.2010

    Виды геоботанических карт. Этапы процесса картографирования запасов лекарственных растений. Методические подходы и обработка исходной информации при подготовке карт. Биологически активные вещества и сроки заготовки лекарственных растительных средств.

    контрольная работа , добавлен 25.04.2014

    Экологические группы растений: гидатофиты, гидрофиты, гигрофиты, мезофиты и ксерофиты. Общая характеристика ультрафиолетового излучения и его роль в эволюции живого. Влияние УФ-радиации на содержание фотосинтетических пигментов. Понятие стресса растений.

    курсовая работа , добавлен 07.11.2015

    Сущность понятия "фотопериодизм". Нейтральные, длиннодневные, короткодневные растения. Свет и его роль в жизни растений. Экологические группы растений по отношению к свету. Адаптация растений к световому режиму. Локализация фотопериодических реакций.

    курсовая работа , добавлен 20.05.2011

    Исследование сущности фотосинтеза и необходимых для него условий. Этапы деления клетки. Выделительные системы растений (железистые волоски, выделительные ходы, млечники.). Типы почек по происхождению. Биологическая роль распространения плодов и семян.

    контрольная работа , добавлен 23.03.2011

    Общая характеристика ядовитых растений, их значение, распространение и роль в природе и жизни человека. Первая помощь при отравлении ядовитыми растениями. Биолого-морфологическая характеристика ядовитых растений. Ядовитые растения Нижегородской области.

    курсовая работа , добавлен 03.09.2011

    Пищевая ценность дикорастущих растений. Характеристика биогологически активных веществ лекарственных растений. Распределение дикорастущих пищевых, лекарственных и ядовитых растений по природным зонам. Правила сбора и употребления пищевых растений.

    реферат , добавлен 22.03.2010

    История открытия фотосинтеза. Образование в листьях растений веществ, выделение кислорода и поглощение углекислого газа на свету и в присутствии воды. Роль хлоропластов в образовании органических веществ. Значение фотосинтеза в природе и жизни человека.

    презентация , добавлен 23.10.2010

    Исследование основных жизненных форм растений. Описание тела низших растений. Характеристика функций вегетативных и генеративных органов. Группы растительных тканей. Морфология и физиология корня. Видоизменения листа. Строение почек. Ветвление побегов.

    презентация , добавлен 18.11.2014

    Явления в жизни растений, связанные с наступлением лета. Роль человека, влияющего на жизнь растений в природных сообществах. Связь растений с окружающей средой. Луговая флора Республики Беларусь. Геоботаническое описание луговой растительности.

План лекции:

4. Биосинтез хлорофилла

6. Каротиноиды

7. Фикобилины

1. Пигменты фотосинтеза. Хлорофиллы

Для того чтобы свет мог оказывать влияние на растительный организм и, в част­ности, быть использованным в процессе фотосинтеза, необходимо его погло­щение фоторецепторами-пигментами. Пигменты - это окрашенные вещества. Пигменты поглощают свет определенной длины волны. Непоглощенные участки солнечного спектра отражаются, что и обусловливает окраску пигментов. Так, зеленый пигмент хлорофилл поглощает красные и синие лучи, тогда как зеле­ные лучи в основном отражаются. Видимая часть солнечного спектра включает длины волн от 400 до 700 нм. Вещества, поглощающие весь видимый участок спектра, кажутся черными.

Состав пигментов зависит от систематического положения группы организ­мов. У фотосинтезирующих бактерий и водорослей пигментный состав очень разнообразен (хлорофиллы, бактериохлорофиллы, бактериородопсин, каротиноиды, фикобилины). Их набор и соотношение специфичны для различных групп и во многом зависят от среды обитания организмов. Пигменты фотосин­теза у высших растений значительно менее разнообразны. Пигменты, сконцен­трированные в пластидах, можно разделить на три группы: хлорофиллы, каротиноиды, фикобилины.

Важнейшую роль в процессе фотосинтеза играют зеленые пигменты -хлорофил­лы. Французские ученые П.Ж. Пелетье и Ж. Кавенту (1818) выделили из листьев зеленое вещество и назвали eгo хлорофиллом (от греч. «хлорос» - зеленый и «филлон» - лист). В настоящее время известно около десяти хлорофиллов. Они отличаются по химическому строению, окраске, распространению среди живых организмов. У всех высших растений содержатся хлорофиллы а и b. Хлоро­филл с обнаружен в диатомовых водорослях, хлорофилл d - в красных водорослях. Кроме того, известны четыре бактериохлорофилла (a, b, с и d), содержащиеся в клетках фотосинтезирующих бактерий. В клетках зеленых бактерий имеются бактериохлорофиллы с и d, в клетках пурпурных бактерий - бактериохлоро­филлы а и b . Основными пигментами, без которых фотосинтез не идет, являют­ся хлорофиллы для зёленых растений и бактериохлорофиллы для бактерий.

Впервые точное представление о пигментах зелёного листа высших растений было получено благодаря работам крупнейшего русского ботаника М.С. Цвета (1872-1919). Он разработал хроматографический метод разделения веществ и выделил пигменты листа в чистом виде. Хроматографический метод разделения веществ основан на их различной способности к адсорбции. Метод этот получил широкоё применение. М.С. Цвет пропускал вытяжку из листа через стеклянную трубку заполненную порошком - мелом или сахарозой (хроматографическую колонку). Отдельные компоненты смеси пигментов различались по степени адсорбируемости и передвигались с разной скоростью, в результате чего они концентрировались в разных зонах колонки. Разделяя колонку на отдель­ные части (зоны) и используя соответствующую систему растворителей, можно было выделить каждый пигмент. Оказалось, что листья высших растений содержат хлорофилл а и хлорофилл b, а также каротиноиды (каротин, ксантофилл и др.). Хлорофиллы, так же как и каротиноиды, нерастворимы в воде, но хоро­шо растворимы в органических растворителях. Хлорофиллы а и b различаются по цвету: хлорофилл а имеет сине-зеленый оттенок, а хлорофилл b - желто-зеленый. Содержание хлорофилла а в листе примерно в три раза больше, чем хлорофилла b.

2. Химические свойства хлорофилла

По химическому строению хлорофиллы - сложные эфиры дикарбоновой органической кислоты - хлорофиллина и двух остатков спиртов фитола и метилового. Эмпирическая формула - C 55 H 72 O 5 N 4 Mg. Хлорофиллин представляет собой азотсодержащее металлорганическое соединение, относящееся к магнийпорфиринам.

В хлорофилле водород карбоксильных групп замещен остатками двух спир­тов - метилового СН 3 ОН и фитола С 20 Н 39 ОН поэтому хлорофилл является слож­ным эфиром. На рисунке 1, А дана структурная формула хлорофилла а .

Хлорофилл b отличается тем, что содержит на два атома водорода меньше и на один_ атом кислорода больше (вместо группы СН 3 группа СНО (рис. 1, Б) . В связи с этим молекулярная масса хлорофилла а - 893 и хлорофилла b - 907. В 1960 г. Р.Б. Вудворд осуществил полный синтез хлорофилла.

В центре молекулы хлорофилла расположен атом магния, который соединен с четырьмя атомами азота пиррольных группировок. В пиррольных группировках хлорофилла имеется система чередующихся двойных и простых связей. Это и есть хромофорная группа хлорофилла, обусловливающая поглощение опреде­ленных лучей солнечного спектра и его окраску. Диаметр порфиринового ядра составляет 10 нм, а длина фитольного остатка - 2 нм.

Рисунок 1 – Хлрофиллы а и b

Расстояние между атомами азота пиррольных группировок в ядре хлорофил­ла составляет 0,25 нм. Интересно, что диаметр атома магния равен 0,24нм. Та­ким образом, магний почти полностью заполняет пространство между атомами азота пиррольных группировок. Это придает ядру молекулы хлорофилла дополнительную прочность. Еще К.А. Тимирязев обратил внимание на близость химического строения двух важнейших пигментов: зеленого - хлорофилла листьев и красного - гемина крови. Действительно, если хлорофилл относится к магний порфиринам, то гемин - к железопорфиринам. Сходство это не случайно и служит еще одним доказательством единства всего органического мира.

Одной из специфических черт строения хлорофилла является наличие в его молекуле помимо четырех гетероциклов еще одной циклической группировки из пяти углеродных атомов - циклопентанона. В циклопентановом кольце со­держится кетогруппа, обладающая большой реакционной способностью. Есть данные, что в результате процесса энолизации по месту этой кетогруппы к мо­лекуле хлорофилла присоединяется вода.

Молекула хлорофилла полярна, ее порфириновое ядро обладает гидрофильными свойствами, а фитольный конец - гидрофобными. Это свойство молеку­лы хлорофилла обусловливает определенное расположение ее в мембранах хлоропластов. Порфириновая часть молекулы связана с белком, а фитольная цепь погружена в липидный слой.

Извлеченный из листа хлорофилл легко реагирует как с кислотами, так и со щелочами. При взаимодействии со щелочами происходит омыление хлорофилла в результате чего образуются, два спирта и щелочная соль кислоты хлорофиллина. В интактном живом листе от хлорофилла может отщепляться фитол под воздействием фермента хлорофиллазы. При взаимодействии со слабой кислотой извлеченный хлорофилл теряет зеленый цвет, образуется соединение феофитин, у которого атом магния в центре молекулы замещен на два атома водорода.

Хлорофилл в живой интактной клетке обладает способностью к обратимому фотоокислению и фотовосстановлению. Способность к окислительно-восстановительным реакциям связана с наличием в молекуле хлорофилла сопряженных двойных связей с подвижными
π-электронами и атомов азота с неподеленными электронами. Азот пиррольных ядер может окисляться (отдавать электрон) или восстанавливаться (присоединять электрон).

Исследования показали, что свойства хлорофилла, находящегося в листе и извлеченного из листа, различны, так как в листе он находится в комплексном соединении с белком. Это доказывается следующими данными:

Спектр поглощения хлорофилла, находящегося в листе, иной по сравнению с извлеченным хлорофиллом.

Хлорофилл невозможно извлечь абсолютным спиртом из сухих листьев. Экстракция протекает успешно, только если листья увлажнить или к спирту добавить воды, которая разрушает связь между хлорофиллом и белком.

Выделенный из листа хлорофилл легко подвергается разрушению под влия­нием самых разнообразных воздействий (повышенная кислотность, кислород и даже свет).

Между тем в листе хлорофилл достаточно устойчив ко всем перечисленным фак­торам. Следует отметить, что хотя крупный русский ученый В. Н. Любименко и предлагал этот комплекс назвать хлороглобином, по аналогии с гемоглобином, связь между хлорофиллом и белком иного характера, чем между гемином и белком. Для гемоглобина характерно постоянное соотношение - на 1 молекулу белка приходится 4 молекулы гемина. Между тем соотношение между хлорофил­лом и белком различно и претерпевает изменения в зависимости от типа растений, фазы их развития, условий среды (от 3 до 10 молекул хлорофилла на 1 молекулу белка). Связь между молекулами белка и хлорофиллом осуществляется путем нестойких комплексов, образующихся при взаимодействии кислотных групп белковых молекул и азота пиррольных колец. Чем выше содержание дикарбоновых аминокислот в белке, тем лучше идет их комплексирование с хлорофиллом (Т.Н.Годнее). Белки, связанные с хлорофиллом, характеризуются низкой изоэлектрической точкой (3,7-4,9). Молекулярная масса этих белков порядка 68 кДа. Вме­сте с тем хлорофилл может взаимодействовать и с липидами мембран.

Важным свойством молекул хлорофилла является их способность к взаимодействию друг с другом. Переход из мономерной в агрегированную форму воз­ник в результате взаимодействия двух и более молекул при их близком располо­жении друг к другу. В процессе образования хлорофилла его состояние в живой клетке закономерно меняется. При этом и происходит его агрегация (А.А. Красновский). В настоящее время показано, что хлорофилл в мембранах пластид находится в виде пигмент-липопротеидных комплексов с различной степенью агрегации.

3. Физические свойства хлорофилла

Как уже отмечалось, хлорофилл способен к избирательному поглощению света. Спектр поглощения данного соединения определяется его способностью погло­щать свет определенной длины волны (определенного цвета). Для того чтобы получить спектр поглощения К.А. Тимирязев пропускал луч света через рас­твор хлорофилла. Часть лучей поглощалась хлорофиллом, и при последующем пропускании через призму в спектре обнаруживались черные полосы. Было по­казано, что хлорофилл в той же концентрации, как в листе, имеет две основные линии поглощения в красных и сине-фиолетовых лучах. При этом хло­рофилл а в растворе имеет максимум поглощения 429 и 660 нм, тогда как хло­рофилл b - 453 и 642 нм. Однако необходимо учитывать, что в листе спектры поглощения хлорофилла меняются в зависимости от его состояния, степени аг­регации, адсорбции на определенных белках. В настоящее время показано, что есть формы хлорофилла, поглощающие свет с длиной волны 700, 710 и даже 720 нм. Эти формы хлорофилла, поглощающие свет с большой длиной волны, имеют особенно важное значение в процессе фотосинтеза.

Хлорофилл обладает способностью к флуоресценции. Флуоресценция пред­ставляет собой свечение тел, возбуждаемое освещением и продолжающееся очень короткий промежуток времени (10 8 -10 9 с). Свет, испускаемый при флюорес­ценции, имеет всегда большую длину волны по сравнению с поглощенным. Это Связано с тем, что часть поглощенной энергии выделяется в виде тепла. Хлоро­филл обладает красной флуоресценцией.

4. Биосинтез хлорофилла

Синтез хлорофилла происходит в две фазы: темновую - до протохлорофиллида и световую - образование из протохлорофиллида хлорофиллида (рис. 2). Син­тез начинается с превращения глутаминовой кислоты в δ-аминолевулиновую кислоту. 2 молекулы δ-аминолевулиновой кислоты конденсируются в порфобилиноген. Далее 4 молекулы порфобилиногена превращаются в протопорфирин IX. После этого в кольцо встраивается магний и получается протохлорофиллид. На свету и в присутствии НАДН образуется хлорофиллид: протохлорофиллид + 2Н + + hv →хлорофиллид

Рисунок 2 - Схема биосинтеза хлорофилла


Протоны присоединяются к четвертому пиррольному кольцу в молекуле пиг­мента. На последнем этапе происходит взаимодействие хлорофиллида со спир­том фитолом: хлорофиллид + фитол → хлорофилл.

Поскольку синтез хлорофилла - процесс многоэтапный, в нем участвуют раз­личные ферменты, составляющие, по-видимому, полиферментный комплекс. Интересно заметить, что образование многих из этих белков-ферментов ус­коряется на свету. Свет косвенно ускоряет образование предшественников хлорофилла. Одним из наиболее важных ферментов является фермент, катали­зирующий синтез δ-аминолевулиновой кислоты (аминолевулинатсинтаза). Важ­но отметить, что активность этого фермента также повышается на свету.

5. Условия образования хлорофилла

Исследования влияния света на накопление хлорофилла в этиолированных про­ростках позволили установить, что первым в процессе зеленения появляется хлорофилл а. Спектрографический анализ показывает, что процесс образования хлорофилла идет очень быстро. Так, уже через
1 мин после начала освещения выделенный из этиолированных проростков пигмент имеет спектр поглощения, совпадающий со спектром поглощения хлорофилла а. По мнению А.А. Шлыка, хлорофилл b образуется из хлорофилла а.

При исследовании влияния качества света на образование хлорофилла в боль­шинстве случаев проявилась положительная роль красного света. Большое значение имеет интенсивность освещения. Существование нижнего предела ос­вещенности для образования хлорофилла было показано в опытах В.Н. Любименко для проростков ячменя и овса. Оказалось, что освещение электрической лампой мощностью 10 Вт на расстоянии 400 см было пределом, ниже которого образование хлорофилла прекращалось. Существует и верхний предел освещен­ности, выше которого образование хлорофилла тормозится.

Проростки, выросшие в отсутствие света, называют этиолированными. Такие проростки характеризуются измененной формой (вытянутые стебли, неразвившиеся листья) и слабой желтой окраской (хлорофилла в них нет). Как было ска­зано выше, образование хлорофилла на заключительных этапах требует света.

Еще со времен Ю. Сакса (1864) известно, что в некоторых случаях хлоро­филл образуется и в отсутствие света. Способность образовывать хлорофилл в темноте характерна для организмов, стоящих на нижней ступени эволюцион­ного процесса. Так, при благоприятных условиях питания некоторые бактерии могут синтезировать в темноте бактериохлорофилл. Цианобактерии при доста­точном снабжении органическим веществом растут и образуют пигменты в тем­ноте. Способность к образованию хлорофилла в темноте обнаружена и у таких высокоорганизованных водорослей, как харовые. Лиственные и печеночные мхи сохраняют способность образовывать хлорофилл в темноте. Почти у всех видов хвойных при прорастании семян в темноте семядоли зеленеют. Более развита эта способность у теневыносливых пород хвойных деревьев. По мере роста про­ростков в темноте образовавшийся хлорофилл разрушается, и на 35-40-й день проростки в отсутствие света погибают. Интересно заметить, что проростки хвой­ных, выращенные из изолированных зародышей в темноте, хлорофилла не об­разуют. Однако достаточно присутствия небольшого кусочка нераздробленного эндосперма, чтобы проростки начинали зеленеть. Зеленение происходит даже в том случае, если зародыш соприкасается с эндоспермом другого вида хвойных деревьев. При этом наблюдается прямая корреляция между величиной окисли­тельно-восстановительного потенциала эндосперма и способностью пророст­ков зеленеть в темноте.

Можно сделать заключение, что в эволюционном плане хлорофилл перво­начально образовался как побочный продукт темнового обмена. Однако в даль­нейшем на свету растения, обладающие хлорофиллом, получили большее преимущество благодаря возможности использовать энергию солнечного све­та, и эта особенность была закреплена естественным отбором.

Образование хлорофилла зависит от температуры. Оптимальная температура для накопления хлорофилла 26-30°С. От температуры зависит лишь образова­ние предшественников хлорофилла (темновая фаза). При наличии уже образо­вавшихся предшественников хлорофилла процесс зеленения (световая фаза) идет с одинаковой скоростью независимо от температуры.

На скорость образования хлорофилла оказывает влияние содержание воды. Сильное обезвоживание проростков приводит к полному прекращению обра­зования хлорофилла. Особенно чувствительно к обезвоживанию образование протохлорофиллида.

Еще В.И. Палладии обратил внимание на необходимость углеводов для про­текания процесса зеленения. Именно с этим связано то, что зеленение этио­лированных проростков на свету зависит от их возраста. После 7-9-дневного возраста способность к образованию хлорофилла у таких проростков резко падает. При опрыскивании сахарозой проростки снова начинают интенсивно зеленеть.

Важнейшее значение для образования хлорофилла имеют условия минераль­ного питания. Прежде всего необходимо достаточное количество железа. При недостатке железа листья даже взрослых растений теряют окраску. Это явление названо хлорозом. Железо - важный катализатор образования хлорофилла. Оно необходимо на этапе синтеза δ-аминолевулиновой кислоты, а также синтеза про-топорфирина. Большое значение для обеспечения синтеза хлорофилла имеет нормальное снабжение растений азотом и магнием, так как оба эти элемента входят в состав хлорофилла. При недостатке меди хлорофилл легко разрушает­ся. Это, по-видимому, связано с тем, что медь способствует образованию ус­тойчивых комплексов между хлорофиллом и соответствующими белками.

Исследование процесса накопления хлорофилла у растений в течение веге­тационного периода показало, что максимальное содержание хлорофилла приурочено к началу цветения. Есть даже мнение, что повышение образования хлорофилла может быть использовано как индикатор, указывающий на готов­ность растений к цветению. Синтез хлорофилла зависит от деятельности корне­вой системы. Так, при прививках содержание хлорофилла в листьях привоя за­висит от свойств корневой системы подвоя. Возможно, что влияние корневой системы связано с тем, что там образуются гормоны (цитокинины). У двудом­ных растений большим содержанием хлорофилла характеризуются листья жен­ских особей.

6. Каротиноиды

Наряду с зелеными пигментами в хлоропластах и хроматофорах содержатся пиг­менты, относящиеся к группе каротиноидов. Каротиноиды - это желтые и оран­жевые пигменты алифатического строения, производные изопрена. Кароти­ноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Кароти­ноиды, содержащие кислород, получили название ксантофиллы. Основными представителями каротиноидов у высших растений являются два пигмента -
β-каротин (оранжевый) С 40 Н 56 и ксантофилл (желтый) C 40 H 56 O 2 . Каротин состоит из 8 изопреновых остатков (рис. 3).

Рисунок 3 – Структура β-каротина

При разрыве углеродной цепочки пополам и образовании на конце спиртовой группы каротин превращается в 2 молекулы витамина А. Обращает на себя внимание сходство в структуре фитола - спирта, входящего в состав хлорофилла, и углеродной цепочки, соединяю­щей иононовые кольца каротина. Предполагается, что фитол возникает как про­дукт гидрирования этой части молекулы каротиноидов. Поглощение света каротиноидами, их окраска, а также способность к окислительно-восстановительным реакциям обусловлены наличием конъюгированных двойных связей, β-каротин имеет два максимума поглощения, соответствующие длинам волн 482 и 452 нм. В отличие от хлорофиллов каротиноиды не поглощают красные лучи, а также не обладают способностью к флуоресценции. Подобно хлорофиллу каротиноиды в хлоропластах и хроматофорах находятся в виде нерастворимых в воде комплек­сов с белками.

Уже тот факт, что каротиноиды всегда присутствуют в хлоропластах, позволяет считать, что они принимают участие впроцессе фотосинтеза. Однако не отмечено ни одного случая, когда в отсутст­вие хлорофилла этот процесс осуществляется. В настоящее время установлено, что каротиноиды, поглощая определенные участки солнечного спектра, пере­дают энергию этих лучей на молекулы хлорофилла. Тем самым они способствуют использованию лучей, которые хлорофиллом не поглощаются.

Физиологическая роль каротиноидов не ограничивается их участием в пе­редаче энергии на молекулы хлорофилла. По данным русского исследователя
Д.И. Сапожникова, на свету происходит взаимопревращение ксантофиллов (виолаксантин превращается в зеаксантин), что сопровождается выделением кислорода. Спектр действия этой реакции совпадает со спектром поглощения хлорофилла, что позволило высказать предположение об ее участии в процессе разложения воды и выделения кислорода при фотосинтезе.

Имеются данные, что каротиноиды выполняют защитную функцию, предо­храняя различные органические вещества, в первую очередь молекулы хлорофил­ла, от разрушения на свету в процессе фотоокисления. Опыты, проведенные на мутантах кукурузы и подсолнечника, показали, что они содержат протохлорофиллид (темновой предшественник хлорофилла), который на свету переходит в хлорофилл а, но разрушается. Последнее связано с отсутствием способности исследованных мутантов к образованию каротиноидов.

Ряд исследователей указывают, что каротиноиды играют определенную роль в половом процессе у растений. Известно, что в период цветения высших рас­тений содержание каротиноидов в листьях уменьшается. Одновременно оно заметно растет в пыльниках, а также в лепестках цветков. По мнению П. М. Жуков­ского, микроспорогенез тесно связан с метаболизмом каротиноидов. Незрелые пыльцевые зерна имеют белую окраску, а созревшая пыльца - желто-оранжевую. В половых клетках водорослей наблюдается дифференцированное распределение пигментов. Мужские гаметы имеют желтую окраску и содержат каротиноиды. Женские гаметы содержат хлорофилл. Высказывается мнение, что именно каро­тин обусловливает подвижность сперматозоидов. По данным В. Мевиуса, мате­ринские клетки водоросли хламидомонады образуют половые клетки (гаметы) первоначально без жгутиков, в этот период они еще не могут передвигаться в воде. Жгутики образуются только после освещения гамет длинноволновыми лучами, которые улавливаются особым каротиноидом - кроцетином.

Образование каротиноидов. Синтез каротиноидов не требует света. При фор­мировании листьев каротиноиды образуются и накапливаются в пластидах еще в тот период, когда зачаток листа защищен в почке от действия света. В начале освещения образование хлорофилла в этиолированных проростках сопровож­дается временным падением содержания каротиноидов. Однако затем содер­жание каротиноидов восстанавливается и даже повышается с увеличением интенсивности освещения. Установлено, что между содержанием белка и каро­тиноидов имеется прямая коррелятивная связь. Потеря белка и каротиноидов в срезанных листьях идет параллельно. Образование каротиноидов зависит от источника азотного питания. Более благоприятные результаты по накоплению каротиноидов получены при выращивании растений на нитратном фоне по срав­нению с аммиачным. Недостаток серы резко уменьшает содержание кароти­ноидов. Большое значение имеет соотношение - Ca/Mg в питательной среде. Относительное увеличение содержания кальция приводит к усиленному накоп­лению каротиноидов по сравнению с хлорофиллом. Противоположное влияние оказывает увеличение содержания магния.

7. Фикобилины

Фикобилины- красные и синие пигменты, содержащиеся у цианобактерий и некоторых водорослей. Исследования показали, что красные водоросли и циа­нобактерий наряду с хлорофиллом а содержат фикобилины. В основе химическо­го строения фикобилинов лежат четыре пиррольные группировки. В отличие от хлорофилла у фикобилинов пиррольные группы расположены в виде открытой цепочки (рис. 4) . Фикобилины представлены пигментами: фикоцианином, фикоэритрином и аллофикоцианином. Фикоэритрин - это окисленный фикоцианин. Красные водоросли в основном содержат фикоэритрин, а цианобактерий - фикоцианин. Фикобилины образуют прочные соединения с белками (фикобилин-протеиды). Связь между фикобилинами и белками разрушается только кислотой. Предполагается, что карбоксильные группы пигмента связываются с аминогруппами белка. Необходимо отметить, что в отличие от хлорофиллов и каротиноидов, расположенных в мембранах, фикобилины концентрируются в особых гранулах (фикобилисомах), тесно связанных с мембранами тилакоидов.

Рисунок 4 – Хромофорная группа фикоэритринов

Фикобилины поглощают лучи в зеленой и желтой частях солнечного спек­тра. Это та часть спектра, которая находится между двумя основными линиями поглощения хлорофилла. Фикоэритрин поглощает лучи с длиной волны 495- 565 нм, а фикоцианин - 550- 615 нм. Сравнение спектров поглощения фи-кобилинов со спектральным составом света, в котором проходит фотосинтез у цианобактерий и красных водорослей, показывает, что они очень близки. Это позволяет считать, что фикобилины поглощают энергию света и, подобно каротиноидам, передают ее на молекулу хлорофилла, после чего она используется процессе фотосинтеза.

Наличие фикобилинов у водорослей является примером приспособления ор­ганизмов в процессе эволюции к использованию участков солнечного спектра, которые проникают сквозь толщу морской воды (хроматическая адаптация). Как известно, красные лучи, соответствующие основной линии поглощения хлоро­филла, поглощаются, проходя через толщу воды. Наиболее глубоко проникают зеленые лучи, которые поглощаются не хлорофиллом, а фикобилинами.


ФОТОСИНТЕЗ (12 часов)

Муниципальное бюджетное образовательное учреждение

«Буранная СОШ»

Изучение свойств растительных пигментов

Работу выполнила ученица 8 класса

Вдовкина Дарья

Руководитель

учитель экологии и биологии

Вдовкина Ольга Владимировна

Буранное

2014 г.

Содержание

    Введение.

    Основная часть:

    Практическая часть работы.

    Не обходимость кислорода для разрушения хлорофилла.

    Выводы.

    Список литературы и Интернет-ресурсов.

    Приложения.

Введение

Природа обладает удивительным многоцветием. Мы не устаем восхищаться красотой окружающего растительного мира. Весной мы с надеждой смотрим на нежно-зеленые молодые листочки деревьев, а желто-оранжевая цветовая гамма осеннего леса навевает грусть и печаль по ушедшему лету. Кто не восхищался красками цветущего луга, лесной опушки, осенней листвы, даров сада и огорода? Я думаю, что каждый ребенок, как только он начинает изучать окружающий мир, задает себе вопросы: «Почему листья зеленые? Почему они осенью желтеют или краснеют? Почему лепестки ромашки белые, а розы - красные? Почему окружающие растения окрашены именно так, а не иначе, как возникает такое богатство цветов и оттенков? Что для природы значат эти цвета?» Меня заинтересовали эти вопросы, надеюсь, что моя работа поможет на них ответить.

Цель моей работы – выяснить, от чего зависит цвет растения.

Задачи, которые я перед собой поставила:

    Изучить литературу с целью выяснить, какие вещества придают органам растения различную окраску.

    Провести несколько практических опытов с целью выявления особенностей этих веществ.

Что такое «пигмент»? Какие бывают пигменты?

Изучив специальную литературу, я выяснила, что окраску различным органам растений придают особые вещества – пигменты. Это органические соединения, присутствующие в клетках и тканях растений и окрашивающие их. Многие из них важны для фотосинтеза. Расположены пигменты в пластидах клетки – хлоропластах и хромопластах, некоторые находятся в клеточном соке растений.

Существует несколько основных групп растительных пигментов:

    Самыми распространенным растительным пигментом является хлорофилл. Это одно из самых важных на Земле красящих веществ. Название хлорофилла идет от греческих слов «хлорос» - зеленый и «филлон» - лист. Хлорофилловые пластиды зеленые. Зеленый цвет – цвет жизни. Зеленые «фабрики» вокруг нас поддерживают жизнь. Хлорофилл обладает жизненно важной функций: перехват солнечных лучей и преобразование полученной энергии в питательные вещества - простые сахара, которые получаются из воды и . Эти сахара являются основой питания растений - источниками углеводов, необходимых для роста и развития. Во время процесса производства питательных веществ хлорофилл разрушается, так как непрерывно используется. Несмотря на это, в течение сезона роста, растения снова и снова восстанавливают запасы хлорофилла. Большой запас хлорофилла позволяет листьям оставаться зелёными. Возрастные изменения хлоропластов сопровождаются изменением окраски – от салатно-зеленого, разной интенсивности зеленого, до желто-зеленого. Когда он в большом количестве содержится в , что происходит во время периода роста, зелёный цвет хлорофилла преобладает, затмевая цвета любых других пигментов, которые могут содержаться в листе. Поэтому листья летом имеют характерный зелёный цвет.

    Флавоны и флавонолы – одни из самых распространенных растительных пигментов. Нет растения, где бы они ни были обнаружены. Долгое время считалось, что эти пигменты характерны только для растительного царства, однако в 90-х годах прошлого века некоторые флавоны были обнаружены и в грибах. На латинском языке «flavus» означает «желтый». В природе флавоны и флавонолы являются основными пигментами, обеспечивающими желтую цветовую гамму плодов и цветов. Много этих красителей и в других органах растений, хотя там желтая окраска маскируется другими пигментами. Разнообразие оттенков желтого цвета достигается как изменением концентрации флавонов и флавонолов, так и присутствием в соке растений солей кальция и магния, увеличивающих интенсивность окраски.

    Близки к флавонам по строению другие красители желтого цвета – халконы и ауроны. Встречаются они значительно реже. Среди известных нам растений эти пигменты можно обнаружить в листьях и цветах кислицы, кореопсиса и львиного зева. Как и некоторые люди, эти красители совершенно не переносят курильщиков и краснеют, если их окуривать сигаретным дымом. Отдельного упоминания заслуживают халконы еще и потому, что во многих случаях именно из них в процессе биосинтеза в растениях образуются флавоны, флавонолы и ауроны. Подражая природе, химики применяют халконы для получения разнообразных растительных и искусственных пигментов в лабораторных условиях.

    Еще одна группа пигментов, родственная флавонам и флавонолам, носит название антоцианов. Антоцианы, которые ответственны за красные цвета в листьях, не присутствуют в листьях до тех пор, пока в листьях не начнёт снижаться уровень хлорофиллов. Раньше предполагали, что антоцианы просто результат разрушения зелёного хлорофилла, но эта теория уже не считается общепризнанной. Антоциановые пигменты, вызывающие розовую, красную и пурпурную осеннюю окраску листьев, связаны с веществом - углевод (или сахара, крахмала). Так накопление углеводов способствует образованию клеточного сока с пигментами антацина. Антоцианы растворимы в воде и обычно встречаются в клеточном соке.

    Каротиноиды – пигменты, которые имеют преимущественно жёлтый или оранжевый цвет. Они всегда присутствуют в листьях, но перекрываются зелёным цветом хлорофилла. Название пигментам этого типа дал ученый М. С. Цвет. В честь одного из пигментов, содержащегося в оранжевых корнях моркови, он назвал весь этот класс красителей каротиноидами («carotte» – морковь). Каротиноиды придают желтый цвет цветам и листьям растений. Желтая, оранжевая и красная окраска кукурузы, тыквы, кабачков и перезрелых огурцов, баклажанов, паслена, помидора, дыни, а также многих цитрусовых обусловлена присутствием в них разнообразных каротиноидных пигментов. Рекордсменом по числу каротиноидных пигментов является стручковый красный перец.

Какие пигменты составляют окраску листа?

Первый опыт проведем с целью выяснить, какие пигменты обеспечивают листьям растения зеленую окраску. Оборудование, необходимое для проведения опыта: свежие листья комнатных растений, 95% -ый этиловый спирт, бензин, ступка фарфоровая, пробирка, воронка, ножницы, фильтровальная бумага.

Ход опыта. Прежде всего, получим вытяжку пигментов. Лучше, если вытяжка будет концентрированной, темно-зеленой. Можно использовать листья любых травянистых растений, а лучше всего теневыносливых комнатных растений - они мяче, легче растираются, содержат больше хлорофилла. К измельченным листьям добавим 5-10 мл этилового спирта, на кончике ножа мел для нейтрализации кислот клеточного сока и разотрем их в фарфоровой ступке до однородной зеленой массы. Подольем еще этилового спирта и осторожно продолжаем растирание, пока спирт не окрасится в интенсивный зеленый цвет. Полученную спиртовую вытяжку отфильтруем в чистую сухую пробирку или колбу.
Убедимся в том, что спиртовая вытяжка пигментов помимо зеленых содержит еще и желтые пигменты. Для этого на фильтровальную бумагу нанесем стеклянной палочкой каплю спиртовой вытяжки пигментов листа. Через 3-5 мин на бумаге образуются цветные концентрические круги: в центре зеленый (хлорофилл), снаружи - желтый (каротиноиды) (Приложение 1).

Вывод. Разделение пигментов обусловлено их различной адсорбцией (поглощением в поверхностном слое) на фильтровальной бумаге и неодинаковой растворимостью в растворителе, в данном случае - этиловом спирте. Каротиноиды хуже, по сравнению с хлорофиллом, адсорбируются на бумаге, больше растворимы в спирте, поэтому передвигаются по фильтровальной бумаге дольше хлорофилла.
Таким образом, в создании цвета листа участвуют две группы пигментов - зеленые и желтые. Содержание хлорофилла в сформировавшихся листьях примерно в 3 раза выше, чем каротиноидов, поэтому желтый цвет каротиноидов маскируется зеленым цветом хлорофилла. Количественное соотношение хлорофилла и каротиноидов не постоянно, оно зависит от возраста листа, физиологического состояния растения. Если содержание хлорофилла уменьшается, листья приобретают желто-зеленый или желтый цвет.

При каком освещении желтеют листья?

Различные факторы внешней среды (освещенность растений, температура воздуха, водоснабжение) оказывают влияние на окраску листьев. Например, в зависимости от погодных условий цвет листьев клена меняется от желтого до пурпурно-красного.

Цель этого опыта – установить устойчивость хлорофилла в листьях растений без освещения.

Оборудование: для опыта нужны листья любого растения, которые уже закончили рост, но еще не имеют внешних признаков старения, стакан, черный лист бумаги.

Ход опыта. Половину листовой пластинки закрываем с двух сторон черной бумагой. Лист помещаем в стакан с водой и ставим в хорошо освещенное место. Спустя 4-5 дней снимем бумагу, сравним цвет половинок листа. Хорошо заметны различия в окраске: освещенная часть зеленая, а затемненная - желтая.

Вывод: Результаты опыта свидетельствуют, что снижение интенсивности и продолжительности освещения листьев ускоряет распад молекул хлорофилла в хлоропластах. Мы сравнили устойчивость хлорофилла в листьях бадана и традесканции. Самый неустойчивый пигмент в листьях традесканции, он разрушается за 20 дней, а самый устойчивый у фикуса, разрушается через 40 - 50 дней. (Приложение 1)

Необходимость кислорода для разрушения хлорофилла.

Для разрушения хлорофилла необходимо еще одно условие – кислород. Проводимый опыт ставит своей целью доказать, что без кислорода хлорофилл не разрушается или разрушается медленнее.

Оборудование: стакан c водой, лист плотной бумаги, зеленые листья растения.

Ход опыта: Стареющий, но еще сохранивший зеленый цвет лист любого светолюбивого растения опустим в стакан с водой так, чтобы только половина листа его находилась под водой. Для этого закрепим лист в прорези укрывающей стакан плотной бумаги. Стакан поставим в темное место.

Вывод: Через 3 - 5 дней станут заметны различия в окраске листа: находившаяся в воде часть сохранит зеленый цвет, другая - пожелтеет. Уменьшение скорости распада хлорофилла в той части листа, которая находилась в воде, свидетельствует, что в разрушении хлорофилла важную роль играет процесс дыхания. Содержание кислорода в воде намного ниже, чем в воздухе. (Приложение 2)

Влияние на хлорофилл химических веществ.

Как органическое вещество, пигмент хлорофилл должен разрушаться от воздействия различных химических веществ. Цель этого опыта – проверить, как воздействует на хлорофилл соляная кислота.

Оборудование: Для опыта нужны "чернила" - 10%-ая соляная кислота, листья растений, палочка.

Ход опыта: Заостренный конец палочки смочим в соляной кислоте и нанесем на лист рисунок (в нашем случае это смайлик и звездочка). На зеленом фоне листа бегонии постепенно появляется рисунок звездочки бурого цвета. На листе монстеры был нарисован смайлик, но картинка не появилась, бурое пятно было маленьким, размером с копеечную монету. Значит, скорость изменения цвета в месте нанесения кислоты зависит от плотности покровов листа. Появление бурой окраски обусловлено проникновением кислоты внутрь клеток и образованием в них особого вещества - феофитина.

Вывод: Хлорофилл разрушается при воздействии на него соляной кислоты, а значит, и других кислот. Следовательно, газообразные выделения промышленных предприятий, которые часто содержат в себе химические вещества (например, сернистый ангидрит), которые, проникая через устьица в листья, растворяются в цитоплазме клеток и образуют кислоту. Накопление ее в больших количествах в цитоплазме вызывает разнообразные нарушения обмена веществ в клетках, в том числе и разрушение хлорофилла. Внешне такие повреждения могут выражаться в появлении на листьях бурых пятен. (Приложение 3)

Воздействие на пигмент хлорофилл высокой температуры.

Образование феофитина в листьях многих растений может происходить также и при нагревании листа выше 70 - 80 С. Цель данного опыта – показать, что разрушение хлорофилла и образование феофитина в листьях растений возможно и при воздействии на клетки листьев высокой температуры.

Оборудование: Для опыта нужны зеленые листья различных растений, спиртовка, стеклянная палочка.

Ход опыта: Прикоснемся к листу концом сильно нагретой стеклянной палочки или проколем его раскаленной препаровальной иглой. Во всех случаях возникают своеобразные изменения окраски листа: зеленые круги с неровными бурыми кольцами.

Вывод: Появление бурых колец обусловлено поступлением кислот клеточного сока из вакуолей в цитоплазму, а затем в хлоропласты. Под действием температуры раскаленной стеклянной палочки происходит разрушение молекул хлорофилла, образование феофитина и появление бурого окрашивания. Поскольку химический состав листьев различных растений имеет свои особенности, можно получить различные картины колец отмирания. Желтые, коричневые пятна отмирания появляются на листьях и в природных условиях под влиянием сильного перегрева, засухи. (Приложение 5)

Выводы.

Исследовав вопрос о растительных пигментах, я узнала, что пигменты играют очень значительную роль в природе и имеют огромное значение для жизни на Земле. Многие природные пигменты принимают участие в важных метаболических или физиологических процессах. Особенно детально изучено значение хлорофилла и других пигментов в фотосинтезе. Во многих случаях, однако, единственной известной функцией пигмента является то, что он придает окраску организму или той его части, которая содержит данный пигмент. В растительном царстве ярко окрашенные цветки и плоды, контрастно выделяющиеся на общем фоне зеленой окраски листвы, привлекают внимание насекомых и других животных. Благодаря этому растения извлекают для себя пользу при опылении и распространении семян. По итогам работы были установлены следующие выводы:

    В создании цвета листа участвуют различные группы пигментов.

    Снижение интенсивности и продолжительности освещения листьев ускоряет распад молекул хлорофилла в хлоропластах.

    Уменьшение скорости распада хлорофилла в той части листа, которая находилась в воде, свидетельствует, что в разрушении хлорофилла важную роль играет процесс дыхания.