Тригонометрические функции числового и углового аргументов. Тригонометрические функции числового аргумента. График и свойства функции у = sin x Закрепление нового материала

Основным тригонометрическим тождеством в русскоязычных учебниках математики называют соотношение sin 2 ⁡ α + cos 2 ⁡ α = 1

Мы рассмотрели самые основные тригонометрические функции (не обольщайтесь помимо синуса, косинуса, тангенса и котангенса существует еще целое множество других функций, но о них позже), а пока рассмотрим некоторые основные свойства уже изученных функций.

Тригонометрические функции числового аргумента

Какое бы действительное число t ни взять, ему можно поставить в соответствие однозначно определенное число sin(t) . Правда, правило соответствия довольно сложное и заключается в следующем.

Чтобы по числу t найти значение sin(t) , нужно:

  1. расположить числовую окружность на координатной плоскости так, чтобы центр окружности совпал с началом координат, а начальная точка А окружности попала в точку (1; 0);
  2. на окружности найти точку, соответствующую числу t ;
  3. найти ординату этой точки.
  4. эта ордината и есть искомое sin(t) .

Фактически речь идет о функции s = sin(t) , где t - любое действительное число. Мы умеем вычислять некоторые значения этой функции (например, sin(0) = 0 , \(sin \frac {\pi}{6} = \frac{1}{2} \) и т.д.), знаем некоторые ее свойства.

Точно так же мы можем считать, что уже получили некоторые представления еще о трех функциях: s = cos(t) s = tg(t) s = ctg(t) Все эти функции называют тригонометрическими функциями числового аргумента t .

Связь тригонометрических функций

Как вы, надеюсь, догадываетесь все тригонометрические функции связаны между собой и даже не зная значение одной, ее можно найти через другое.

К примеру, самая главная формула, из всей тригонометрии - это основное тригонометрическое тождество :

\[ sin^{2} t + cos^{2} t = 1 \]

Как видите, зная значение синуса можно найти значение косинуса, и также наоборот. Также очень распространенные формулы, связывающие синус и косинус с тангенсом и котангенсом:

\[ \boxed {\tan\; t=\frac{\sin\; t}{\cos\; t}, \qquad t \neq \frac{\pi}{2}+ \pi k} \]

\[ \boxed {\cot\; t=\frac{\cos\; }{\sin\; }, \qquad t \neq \pi k} \]

Из двух последних формул можно вывести еще одно тригометрическое тождество, связывающее на этот раз тангенс и котангенс:

\[ \boxed {\tan \; t \cdot \cot \; t = 1, \qquad t \neq \frac{\pi k}{2}} \]

Теперь давайте посмотрим, как эти формулы действуют на практике.

ПРИМЕР 1. Упростить выражение: а) \(1+ \tan^2 \; t \), б) \(1+ \cot^2 \; t \)

а) В первую очередь распишем тангенс, сохраняя квадрат:

\[ 1+ \tan^2 \; t = 1 + \frac{\sin^2 \; t}{\cos^2 \; t} \]

\[ 1 + \frac{\sin^2 \; t}{\cos^2 \; t}= \sin^2\; t + \cos^2 \; t + \frac{\sin^2 \; t}{\cos^2 \; t} \]

Теперь введем все под общий знаменатель, и получаем:

\[ \sin^2\; t + \cos^2 \; t + \frac{\sin^2 \; t}{\cos^2 \; t} = \frac{\cos^2 \; t + \sin^2 \; t}{\cos^2 \; t} \]

Ну и наконец, как мы видим числитель можно по основному тригонометрическому тождеству сократить до единицы, в итоге получаем: \[ 1+ \tan^2 \; = \frac{1}{\cos^2 \; t} \]

б) С котангенсом выполняем все те же самые действия, только в знаменателе будет уже не косинус, а синус и ответ получится таким:

\[ 1+ \cot^2 \; = \frac{1}{\sin^2 \; t} \]

Выполнив данное задание мы вывели еще две очень важные формулы, связывающие наши функции, которые тоже нужно знать, как свои пять пальцев:

\[ \boxed {1+ \tan^2 \; = \frac{1}{\cos^2 \; t}, \qquad t \neq \frac{\pi}{2}+ \pi k} \]

\[ \boxed {1+ \cot^2 \; = \frac{1}{\sin^2 \; t}, \qquad t \neq \pi k} \]

Все представленные в рамках формулы вы должны знать наизусть, иначе дальнейшее изучение тригонометрии без них просто невозможно. В дальнейшем будут еще формулы и их будет очень много и уверяю все их вы точно будете запоминать долго, а может и не запомните, но эти шесть штук должны знать ВСЕ!

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Какое бы действительное число t ни взять, ему можно поставить в соответствие однозначно определенное число sin t. Правда, правило соответствия довольно сложное, оно, как мы видели выше, заключается в следующем.

Чтобы по числу t найти значение sin t, нужно:

1) расположить числовую окружность в координатной плоскости так, чтобы центр окружности совпал с началом координат, а начальная точка А окружности попала в точку (1; 0);

2) на окружности найти точку, соответствующую числу t;

3) найти ординату этой точки.

Эта ордината и есть sin t.

Фактически речь идет о функции u = sin t, где t -- любое действительное число.

Все эти функции называют тригонометрическими функциями числового аргумента t.

Есть целый ряд соотношений, связывающих значения различных тригонометрических функций, некоторые из этих соотношений мы уже получили:

sin 2 t+cos 2 t = 1

Из двух последних формул легко получить соотношение, связывающее tg t и ctg t:

Все указанные формулы используются в тех случаях, когда, зная значение какой-либо тригонометрической функции, требуется вычислить значения остальных тригонометрических функций.

Термины «синус», «косинус», «тангенс» и «котангенс» на самом деле были знакомы, правда, использовали их до сих пор в несколько иной интерпретации: в геометрии и в физике рассматривали синус, косинус, тангенс и котангенс у г л а (а не

числа, как это было в предыдущих параграфах).

Из геометрии известно, что синус (косинус) острого угла -- это отношение катета прямоугольного треугольника к его гипотенузе, а тангенс (котангенс) угла -- это отношение катетов прямоугольного треугольника. Иной подход к понятиям синуса, косинуса, тангенса и котангенса развивали в предыдущих параграфах. На самом деле эти подходы взаимосвязаны.

Возьмем угол с градусной мерой б o и расположим его в модели «числовая окружность в прямоугольной системе координат» так, как показано на рис. 14

вершину угла совместим с центром

окружности (с началом системы координат),

а одну сторону угла совместим с

положительным лучом оси абсцисс. Точку

пересечения второй стороны угла с

окружностью обозначим буквой М. Ордина-

рис 14 б o , а абсциссу этой точки -- косинусом угла б o .

Для отыскания синуса или косинуса угла б o совсем не обязательно каждый раз делать указанные весьма сложные построения.

Достаточно заметить, что дуга AM составляет такую же часть длины числовой окружности, какую угол б o составляет от утла 360°. Если длину дуги AM обозначить буквой t, то получим:

Таким образом,

Например,

Считают, что 30° -- это градусная мера угла, а -- радианная мера того же угла: 30° = рад. Вообще:

В частности, рад, откуда, в свою очередь, получаем.

Так что же такое 1 радиан? Есть различные меры длин отрезков: сантиметры, метры, ярды и т.д. Есть и различные меры для обозначения величин углов. Мы рассматриваем центральные углы единичной окружности. Угол в 1° -- это центральный угол, опирающийся на дугу, составляющую часть окружности. Угол в 1 радиан -- это центральный угол, опирающийся на дугу длиной 1, т.е. на дугу, длина которой равна радиусу окружности. Из формулы, получаем, что 1 рад = 57,3°.

Рассматривая функцию u = sin t (или любую другую тригонометрическую функцию), мы можем считать независимую переменную t числовым аргументом, как это было в предыдущих параграфах, но можем считать эту переменную и мерой угла, т.е. угловым аргументом. Поэтому, говоря о тригонометрической функции, в определенном смысле безразлично считать ее функцией числового или углового аргумента.






































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  1. Выработка умений и навыков применения тригонометрических формул для упрощения тригонометрических выражений.
  2. Реализация принципа деятельностного подхода в обучении учащихся, развитие коммуникабельности и толерантности учащихся, умения слушать и слышать других и высказывать своё мнение.
  3. Повышение интереса учащихся к математике.

Тип урока: тренировочный.

Вид урока: урок отработки навыков и умений.

Форма обучения: групповая.

Тип групп : группа, сидящая вместе. Ученики разного уровня обученности, информированности по данному предмету, совместимые учащиеся, что позволяет им взаимно дополнять и обогащать друг друга.

Оборудование: доска; мел; таблица «Тригонометр»; маршрутные листы; карточки с буквами (А, В, С.) для выполнения теста; таблички с названиями экипажей; оценочные листы; таблицы с названиями этапов пути; магниты, мультимедийный комплекс.

Ход урока

Ученики сидят по группам: 4 группы по 5-6 человек. Каждая группа – это экипаж машины с названиями, соответствующими названиям тригонометрических функций, во главе с рулевым. Каждому экипажу выдаётся маршрутный лист и определяется цель: пройти заданный маршрут успешно, без ошибок. Урок сопровождается презентацией.

I. Организационный момент.

Учитель сообщает тему урока, цель урока, ход урока, план работы групп, роль рулевых.

Вступительное слово учителя:

Ребята! Запишите число и тему урока:«Тригонометрические функции числового аргумента».

Сегодня на уроке мы буде учиться:

  1. Вычислять значения тригонометрических функций;
  2. Упрощать тригонометрические выражения.

Для этого нужно знать:

  1. Определения тригонометрических функций
  2. Тригонометрические соотношения (формулы).

Известно давно, что одна голова хорошо, а две лучше, поэтому вы сегодня работаете в группах. Известно также, что дорогу осилит идущий. Но мы живём в век скоростей и время дорого, а значит можно сказать так: «Дорогу осилит едущий», поэтому сегодня урок у нас пройдёт в виде игры «Математическое ралли». Каждая группа – это экипаж машины, во главе с рулевым.

Цель игры:

  • успешно пройти маршрут каждому экипажу;
  • выявить чемпионов ралли.

Название экипажей соответствует марке машины, на которой вы совершаете пробег.

Представляются экипажи и их рулевые:

  • Экипаж – «синус»
  • Экипаж – «косинус»
  • Экипаж – «тангенс»
  • Экипаж – «котангенс»

Девиз гонки: «Торопись медленно!»

Вам предстоит совершить пробег по «математической местности» со множеством препятствий.

Маршрутные листы каждому экипажу выданы. Преодолеть препятствия смогут экипажи, которые знают определения и тригонометрические формулы.

Во время пробега каждый рулевой руководит экипажем, помогая, и оценивая вклад каждого члена экипажа в преодоление маршрута в виде «плюсов» и «минусов» в оценочном листе. За каждый правильный ответ группа получает «+», неправильный «-».

Вам предстоит преодолеть следующие этапы пути:

I этап. ПДД (правила дорожного движения).
II этап. Техосмотр.
III этап. Гонка по пересечённой местности.
IV этап. Внезапная остановка – авария.
V этап. Привал.
VI этап. Финиш.
VII этап. Итоги.

И так в путь!

I этап. ПДД (правила дорожного движения).

1) В каждом экипаже рулевые раздают каждому члену экипажа билеты с теоретическими вопросами:

  1. Расскажите определение синуса числа t и его знаки по четвертям.
  2. Расскажите определение косинуса числа t и его знаки по четвертям.
  3. Назовите наименьшее и наибольшее значения sin t и cos t.
  4. Расскажите определение тангенса числа t и его знаки по четвертям.
  5. Расскажите определение котангенса числа t и его знаки по четвертям.
  6. Расскажите, как найти значение функции sin t по известному числу t.

2) Соберите «рассыпавшиеся» формулы. На тайной доске таблица (см. ниже). Экипажи должны привести в соответствие формулы. Ответ каждая команда записывает на доске в виде строки соответствующих букв (парами).

а tg 2 t + 1 е 1
в tg t ж cos t / sin t, t ≠ к, кZ.
д sin 2 t + cos 2 t и 1/ sin 2 t, t ≠ к, кZ.
ё ctg t к 1,t ≠ к / 2, кZ.
з 1 + ctg 2 t г sin t /cos t, t ≠ /2 + к, кZ.
й tg t ∙ctg t б 1/ cos 2 t, t ≠ /2 + к, кZ.

Ответ: аб, вг, де, ёж, зи, йк.

II этап. Техосмотр.

Устная работа: тест.

На тайной доске написано: задание: упростить выражение.

Рядом записаны варианты ответов. Экипажи определяют правильные ответы за1 мин. и поднимают соответствующий набор букв.

Выражение Варианты ответов
А В С
1. 1 – cos 2 t cos 2 t - sin 2 t sin 2 t
2. sin 2 t – 1 cos 2 t - cos 2 t 2 cos 2 t
3. (cos t – 1)(1+ cos t) -sin 2 t (1+ cos t) 2 (cos t – 1) 2

Ответ: С В А.

III этап. Гонка по пересечённой местности.

3 минуты экипажам на совещание по решению задания, а далее представители экипажей пишут решение на доске. Когда представители экипажей закончат записывать решение первого задания, все ученики (вместе с учителем) проверяют правильность и рациональность решений и записывают в тетрадь. Рулевые оценивают вклад каждого члена экипажа знаками « + » и « – » в оценочных листах.

Задания из учебника:

  • Экипаж – «синус»: № 118 г;
  • Экипаж – «косинус»: № 122 а;
  • Экипаж – «тангенс»: № 123 г;
  • Экипаж – «котангенс»: № 125 г.

IV этап. Внезапная остановка – авария.

Ваш автомобиль сломался. Необходимо устранить неисправность вашего автомобиля.

Для каждого экипажа приведены высказывания, но в них допущены ошибки. Найдите эти ошибки и объясните, почему они были допущены. В высказываниях используются тригонометрические функции, соответствующие маркам ваших машин.

V этап. Привал.

Вы устали и должны отдохнуть. Пока экипаж отдыхает рулевые подводят предварительные итоги: считают «плюсы» и «минусы» у членов экипажа и в целом у экипажа.

Для учеников:

3 и более «+» – оценка «5»;
2 «+» – оценка «4»;
1 «+» – оценка «3».

Для экипажей: «+» и «-» взаимно уничтожаются. Считаются только оставшиеся знаки.

Отгадайте шараду .

Из чисел вы мой первый слог возьмите,
Второй – из слова «гордецы».
А третьим лошадей вы погоните,
Четвёртым будет блеянье овцы.
Мой пятый слог такой же, как и первый,
Последней буквой в алфавите является шестой,
А если отгадаешь ты всё верно,
То в математике раздел получишь ты такой.
(Три-го-но-ме-три-я)

Слово «тригонометрия» (от греческих слов «тригонон» – треугольник и «метрео» – измеряю) означает «измерение треугольников». Возникновение тригонометрии связано с развитием географии и астрономии – науки о движении небесных тел, о строении и развитии Вселенной.

В результате произведённых астрономических наблюдений возникла необходимость определения положения светил, вычисления расстояний и углов. Так как некоторые расстояния, например, от Земли до других планет, нельзя было измерить непосредственно, то учёные стали разрабатывать приёмы нахождения взаимосвязей между сторонами и углами треугольника, у которого две вершины расположены на земле, а третью представляет планета или звезда. Такие соотношения можно вывести, изучая различные треугольники и их свойства. Вот почему астрономические вычисления привели к решению (т. е. нахождению элементов) треугольника. Этим и занимается тригонометрия.

Зачатки тригонометрии были обнаружены в древнем Вавилоне. Вавилонские учёные умели предсказывать солнечные и лунные затмения. Некоторые сведения тригонометрического характера встречаются в старинных памятниках других народов древности.

VI этап. Финиш.

Чтобы успешно пересечь линию финиша осталось поднапрячься и совершить «рывок». Очень важно в тригонометрии уметь быстро определять значения sin t, cost, tgt, ctg t, где 0 ≤ t ≤ . Учебники закрыть.

Экипажи поочерёдно называют значения функций sin t, cost, tgt, ctg t , если:

VII этап. Итоги.

Итоги игры.

Рулевые сдают оценочные листы. Определяется экипаж, ставший чемпионом «Математического ралли» и характеризуется работа остальных групп. Далее называются фамилии тех, кто получил оценки «5» и «4».

Итоги урока.

– Ребята! Чему вы сегодня научились на уроке? (упрощать тригонометрические выражения; находить значения тригонометрических функций). А что для этого нужно знать?

  • определения и свойства sin t, cos t, tg t, ctg t;
  • соотношения, связывающие значения различных тригонометрических функций;
  • знаки тригонометрических функций по четвертям числовой окружности.
  • значения тригонометрических функций первой четверти числовой окружности.

– Я думаю, что вы поняли, что формулы нужно хорошо знать, чтобы их правильно применять. Вы также поняли, что тригонометрия очень важная часть математики, так как она применяется в других науках: астрономии, географии, физике и др.

Домашнее задание:

  • для учеников получивших «5» и «4»: §6, №128а, 130а, 134а.
  • для остальных учеников: §6, №119г, №120г, №121г.
В настоящей главе мы введем тригонометрические функции числового аргумента. Многие вопросы математики, механики, физики и других наук приводят к тригонометрическим функциям не только угла (дуги), но и аргументов совершенно различной природы (длина, время, температура и т. д.). До сих пор под аргументом тригонометрической функции понимался угол, измеренный в градусах или радианах. Теперь мы обобщим понятия синуса, косинуса, тангенса, котангенса, секанса и косеканса, введя их как функции числового аргумента.

Определение. Тригонометрическими функциями числового аргумента называются одноименные тригонометрические функции угла, равного радианам.

Поясним это определение на конкретных примерах.

Пример 1. Вычислим значенйе . Здесь под мы понимаем отвлеченное иррациональное число. Согласно определению . Итак, .

Пример 2. Вычислим значение . Здесь под 1,5 мы понимаем отвлеченное число. Согласно определению (см. приложение II).

Пример 3. Вычислим значение Аналогично предыдущему получаем (см. приложение II).

Итак, в дальнейшем под аргументом тригонометрических функций мы будем понимать угол (дугу) или просто число в зависимости от той задачи, которую решаем. А в ряде случаев аргументом может служить величина, имеющая и другую размерность, например время и т. д. Называя аргумент углом (дугой), мы можем подразумевать под ним число, с помощью которого он измерен в радианах.