Привет студент. Характеристика простых белков (альбумины, глобулины, гистоны, протамины). Отметьте особенности их строения и функции Классификация белков простые белки альбумины глобулины гистоны

Белок — это макромолекула, которыми изобилуют клетки. Каждый из них выполняет определенную функцию, но не все они одинаковы, поэтому имеют определенную классификацию, которая определяет различные типы белков. Эта классификация является полезной для рассмотрения.

Определение белков: Что такое белок?

Белок, от греческого «πρωτεῖος», являются биомолекулами, образованными линейными цепочками аминокислот.

Благодаря своим физико-химическим свойствам белки можно классифицировать как простые белки (голопротеиды), образованные только аминокислотами или их производными; конъюгированные белки (гетеропротеиды), образованные аминокислотами, сопровождающимися различными веществами, и производными белками, веществами, образованными денатурацией и расщеплением предыдущих.

Белки необходимы для жизни, особенно из-за их пластической функции (они составляют 80% обезвоженной протоплазмы каждой клетки), но также из-за их биорегуляторных функций (они являются частью ферментов) и защиты (антитела являются белками).

Белки играют жизненно важную роль для жизни и являются самыми универсальными и разнообразными биомолекулами. Они необходимы для роста организма и выполняют огромное количество различных функций, среди которых:

  • Строительство тканей. Это самая важная функция белка (например: коллаген)
  • Контрабильность (актин и миозин)
  • Ферментативный (например: сукраза и пепсин)
  • Гомеостатик: сотрудничает в поддержании рН (поскольку они действуют как химический буфер)
  • Иммунологические (антитела)
  • Рубцевание ран (например, фибрин)
  • Защитные (например, тромбин и фибриноген)
  • Трансдукция сигнала (например, родопсин).

Белки образованы аминокислотами. Белки всех живых существ определяются главным образом их генетикой (за исключением некоторых антимикробных пептидов не рибосомального синтеза), то есть генетическая информация в значительной степени определяет, какие белки представляют клетка, ткань и организм.

Белки синтезируются в зависимости от того, как регулируются гены, которые их кодируют. Поэтому они восприимчивы к сигналам или внешним факторам. Набор белков, выраженный в данном случае, называется протеомом.

Пять основных свойств, которые позволяют существование и обеспечить функцию белков:

  1. PH-буфер (известный как буферный эффект): они действуют как буферы рН из-за их амфотерного характера, то есть они могут вести себя как кислоты (донорские электроны) или как основания (прием электронов).
  2. Электролитическая способность: определяется методом электрофореза, аналитическим методом, в котором, если белки переносятся на положительный полюс, это происходит потому, что их молекула имеет отрицательный заряд и наоборот.
  3. Специфичность: каждый белок имеет определенную функцию, которая определяется его первичной структурой.
  4. Стабильность: белок должен быть стабильным в среде, где он выполняет свою функцию. Для этого большинство водных белков создают упакованное гидрофобное ядро. Это связано с периодом полураспада и оборотом белка.
  5. Растворимость: необходимо сольватировать белок, который достигается путем воздействия на поверхность белка остатков с одинаковой степенью полярности. Он поддерживается до тех пор, пока присутствуют сильные и слабые связи. Если температура и рН увеличиваются, растворимость теряется.

Денатурация белков

Если изменения в рН, изменения концентрации, молекулярное возбуждение или внезапные изменения температуры происходят в белковом растворе, растворимость белков может быть уменьшена до точки осаждения. Это связано с тем, что связи, которые поддерживают глобулярную конформацию, разрушаются, а белок принимает нитевидную конформацию. Таким образом, слой молекул воды не полностью покрывает молекулы белка, которые имеют тенденцию связываться друг с другом, приводя к образованию крупных частиц, которые выпадают в осадок.

Кроме того, его биокаталитические свойства исчезают при изменении активного центра. Белки, находящиеся в этом состоянии, не могут выполнять деятельность, для которой они были разработаны, короче говоря, они не функционируют.

Этот вариант конформации называется денатурацией. Денатурация не влияет на пептидные связи: при возвращении в нормальные состояния может произойти, что белок восстанавливает примитивную конформацию, которая называется ренатурацией.

Примерами денатурации являются вырезание молока в результате денатурации казеина, осаждение яичного белка, когда овальбумин денатурируется действием тепла или фиксацией расчесанных волос в результате воздействия тепла на кератины волос.

Классификация белков

Согласно форме

Волокнистые белки: они имеют длинные полипептидные цепи и атипичную вторичную структуру. Они нерастворимы в воде и в водных растворах. Некоторыми примерами этого являются кератин, коллаген и фибрин.

Шаровидные белки: характеризуются складыванием своих цепей в плотную или компактную сферическую форму, оставляя гидрофобные группы в белковой и гидрофильной группах наружу, что делает их растворимыми в полярных растворителях, таких как вода. Большинство ферментов, антител, некоторых гормонов и транспортных белков являются примерами глобулярных белков.

Смешанные белки: они имеют фибриллярную часть (обычно в центре белка) и другую шаровидную часть (в конце).

Согласно химическому составу

Простые белки или голопротеиды: при их гидролизе производятся только аминокислоты. Примерами таких веществ являются инсулин и коллаген (шаровидные и волокнистые), альбумины.

Конъюгированные или гетеропротеины: эти белки содержат полипептидные цепи и протезную группу. Неаминокислотная часть называется протезной группой, это могут быть нуклеиновая кислота, липид, сахар или неорганический ион. Примерами этого являются миоглобин и цитохром. Конъюгированные белки или гетеропротеины классифицируются по характеру их протезной группы:

  • Нуклеопротеиды: нуклеиновые кислоты.
  • Липопротеины: фосфолипиды, холестерин и триглицериды.
  • Металлопротеины: группа состоит из металлов.
  • Хромопротеины: это белки, конъюгированные с хромофорной группой (окрашенное вещество, содержащее металл).
  • Гликопротеины: группа состоит из углеводов.
  • Фосфопротеины: белки, конъюгированные с радикалом, содержащим фосфат, отличным от нуклеиновой кислоты или фосфолипида.

Источники белка растительного происхождения, такие как бобовые, имеют более низкое качество чем белки животного происхождения, потому что они представляют менее важные аминокислоты, что компенсируется подходящей смесью обоих.

Взрослый должен употреблять белка в соответствии с образом жизни, то есть, чем больше физической активности, тем потребуется больше источников белка чем сидячих.

В пожилом возрасте, все еще выглядящим противоречиво, нет необходимости в более низком потреблении белка, но рекомендуется увеличить их количество, потому что на этом этапе очень важно регенерировать ткани. Кроме того, мы должны учитывать возможное появление хронических заболеваний, которые могут деградировать белки.

Здесь мы расскажем вам, какие продукты являются лучшими источниками белка:

Продукты с животными белками

  • Яйца: это хороший источник белка, потому что он содержит альбумин превосходного качества, так как он содержит большое количество незаменимых аминокислот.
  • Рыба (лосось, сельдь, тунец, треска, форель …).
  • Молоко.
  • Молочные продукты, сыр или йогурт.
  • Красное мясо, индейка, вырезка и курица.

Эти продукты содержат белки с большим количеством незаменимых аминокислот (те, которые не могут быть синтезированы организмом, поэтому они должны поступать вместе с пищей).

Продукты с белками растительного происхождения

  • Бобовые (чечевица, фасоль, нут, горох …) должны быть дополнены другими продуктами, такими как картофель или рис.
  • Зеленые листовые овощи (капуста, шпинат …).
  • Орехи, такие как фисташки или миндаль (при условии, что они не жареные и не соленые).
  • Сейтан, киноа, соевые бобы, морские водоросли.

Переваривание белков обычно инициируется в желудке, когда пепсиноген превращается в пепсин под действием соляной кислоты и продолжается действием трипсина и химотрипсина в кишечнике.

Диетические белки деградируют до все более мелких пептидов, и до аминокислот и их производных, которые абсорбируются желудочно-кишечным эпителием. Скорость поглощения отдельных аминокислот сильно зависит от источника белка. Например, переваримость многих аминокислот у людей различается между соевым белком и молочным белком и между отдельными молочными белками, такими как бета-лактоглобулин и казеин.

Для молочных белков приблизительно 50% потребляемого белка переваривается в желудке или тонкой кишке, а 90% уже переваривается, когда проглоченная пища достигает подвздошной кишки.
Помимо своей роли в синтезе белка, аминокислоты также являются важным источником питания азота. Белки, как и углеводы, содержат четыре килокалории на грамм, тогда как липиды содержат девять ккал. Спирты — семь ккал. Аминокислоты могут быть превращены в глюкозу посредством процесса, называемого глюконеогенезом.

Структура простых белков представлена только полипептидной цепью (альбумин, инсулин). Однако необходимо понимать, что многие простые белки (например, альбумин) не существуют в "чистом" виде, они всегда связаны с какими-либо небелковыми веществами. Их относят к простым белкам только по той причине, что связи с небелковой группой слабые .

Альбумины Альбумины – это группа схожих белков плазмы крови с молекулярной массой около 40 кДа, содержат много глутаминовой кислоты и поэтому имеют кислые свойства и высокий отрицательный заряд при физиологических рН. Легко адсорбируют полярные и неполярные молекулы, являются, белком-транспортером в крови для многих веществ, в первую очередь для билирубина и длинноцепочечных жирных кислот.

Глобулины Группа разнообразных белков плазмы крови с молекулярной массой до 100 кДа, слабокислые илинейтральные . Они слабо гидратированы, по сравнению с альбуминами меньше устойчивы в растворе и легче осаждаются, что используется в клинической диагностике в "осадочных" пробах (тимоловая ,Вельтмана ). Часто содержат углеводные компоненты.

При электрофорезе глобулины сыворотки крови разделяются, как минимум, на 4 фракции – α1-глобулины,α2-глобулины, β-глобулины и γ-глобулины.

Гистоны – внутриядерные белки массой около 24

кДа. Обладают выраженными основными

свойствами, поэтому при физиологических

значениях рН заряжены положительно и

связываются с дезоксирибонуклеиновой

кислотой (ДНК),

образуя дезоксирибонуклеопротеины .

Существуют 5 типов гистонов – очень богатый

лизином (29%) гистон Н1, другие гистоны Н2а,

H2b, НЗ, Н4 богаты лизином и аргинином (в сумме

Радикалы аминокислот в составе гистонов могут

быть метилированы, ацетилированы или

фосфорилированы. Это изменяет суммарный

заряд и другие свойства белков.

Можно выделить две функции гистонов:

1. Регуляция активности генома , а именно – они препятствуют транскрипции.

2. Структурная – стабилизируют пространственную структуру ДНК.

Гистоны в комплексе с ДНК образуют нуклеосомы – октаэдрические структуры, составленные из

гистонов Н2а, H2b, НЗ, Н4. Между нуклеосомами располагается гистон H1, также связанный с

молекулой ДНК. ДНК обвивает нуклеосому 2,5 раза и переходит к гистону H1, после чего обвивает

следующую нуклеосому. Благодаря такой структуре достигается уменьшение размеров ДНК в 7 раз.

образом, гистоны участвуют в плотной упаковке ДНК при формировании хромосом. Например,

благодаря гистонам в конечном итоге размеры ДНК уменьшаются в тысячи раз: длина ДНК достигает

6-9 см (10-1), а размеры хромосом – всего несколько микрометров (10-6).

Протамины

Это белки массой от 4 кДа до 12 кДа, у ряда организмов (рыбы) они являются заменителями гистонов,

есть в спермиях. Отличаются резко увеличенным содержанием аргинина (до 80%). Протамины

присутствуют в клетках, не способных к делению. Их функция как у гистонов – структурная .

13. Характеристика и особенности строения классов сложных белков:

Простые – содержат в составе только аминокислоты (альбумины, глобулины, гистоны, протамины). Подробно эти белки характеризуются ниже.

Сложные – кроме аминокислот имеются небелковые компоненты (нуклеопротеины, фосфопротеины, металлопротеины, липопротеины, хромопротеины, гликопротеины). Подробно эти белки характеризуются ниже.

КЛАССИФИКАЦИЯ ПРОСТЫХ БЕЛКОВ

Структура простых белков представлена только полипептидной цепью (альбумин, инсулин). Однако необходимо понимать, что многие простые белки (например, альбумин) не существуют в „чистом" виде, они всегда связаны с какими-либо небелковыми веществами. Их относят к простым белкам, т.к. связи с небелковой группой слабые.

А ЛЬБУМИНЫ

Группа белков плазмы крови с молекулярной массой около 40 кДа, имеют кислые свойства и отрицательный заряд при физиологических рН, т.к. содержат много глутаминовой кислоты. Легко адсорбируют полярные и неполярные молекулы, являются в крови переносчиком многих веществ, в первую очередь билирубина и жирных кислот.

Г ЛОБУЛИНЫ

Группа разнообразных белков плазмы крови с молекулярной массой до 100 кДа, слабокислые или нейтральные. Они слабо гидратированы, по сравнению с альбуминами меньше устойчивы в растворе и легче осаждаются, что используется в клинической диагностике в „осадочных" пробах (тимоловая, Вельтмана). Часто содержат углеводные компоненты.

При обычном электрофорезе разделяются, как минимум, на 4 фракции – α 1 , α 2 , β и γ .

Так как глобулины включают в себя разнообразные белки, то их функции многочисленны. Часть α -глобулинов обладает антипротеазной активностью, что защищает белки крови от преждевременного разрушения, например, α 1 -антитрипсин , α 1 -антихимотрипсин, α 2 -макроглобулин . Некоторые глобулины способны к связыванию определенных веществ: трансферрин (переносчик ионов железа), церулоплазмин (содержит ионы меди), гаптогло-

бин (переносчик гемоглобина), гемопексин (переносчик тема). γ -Глобулины являются антителами и обеспечивают иммунную защиту организма.

Г ИСТОНЫ

Гистоны – внутриядерные белки массой около 24 кДа. Обладают выраженными основными свойствами, поэтому при физиологических значениях рН заряжены положительно и связываются с дезоксирибонуклеиновой кислотой (ДНК). Существуют 5 типов гистонов – очень богатый лизином (29%) гистон Н1 , другие гистоны Н2а , H2b , НЗ , Н4 богаты лизином и аргинином (в сумме до 25%).

Радикалы аминокислот в составе гистонов могут быть метилированы, ацетилированы или фосфорилированы. Это изменяет суммарный заряд и другие свойства белков.

Можно выделить две функции гистонов:

1. Регулируют активность генома, а

именно препятствуют транскрипции.

2. Структурная – стабилизируют

пространственную структуру

ДНК.

Гистоны образуют нуклеосомы

– октаэдрические структуры, составленные из гистонов Н2а, H2b, НЗ, Н4. Нуклеосомы соединяются между собой через гистон H1. Благодаря такой структуре достигается уменьшение размеров ДНК в 7 раз. Далее нить

ДНК с нуклеосомами складывается в суперспираль и "суперсуперспираль". Таким образом, гистоны участвуют в плотной упаковке ДНК при формировании хромосом.

П РОТАМИНЫ

Это белки массой от 4 кДа до 12 кДа, у ряда организмов (рыбы) они являются заменителями гистонов, есть в спермиях. Отличаются резко увеличенным содержанием аргинина (до 80%). Протамины присутствуют в клетках, не способных к делению. Их функция как у гистонов – структурная.

К ОЛЛАГЕН

Фибриллярный белок с уникальной структурой. Обычно содержит моносахаридные (галактоза) и дисахаридные (галактоза-глюкоза) остатки, соединенные с ОН-группами некоторых остатков гидроксилизина. Составляет основу межклеточного вещества соединительной ткани сухожилий, кости, хряща, кожи, но имеется, конечно, и в других тканях.

Полипептидная цепь коллагена включает 1000 аминокислот и состоит из повторяющегося триплета [Гли-А-В], где А и В – любые, кроме глицина, аминокислоты. В основном это аланин, его доля составляет 11%, доля пролина и гидроксипролина – 21%. Таким образом, на другие аминокислоты приходится всего 33%. Структура пролина и гидроксипролина не позволяет образовать α -спиральную структуру, из-за этого образуется левозакрученная спираль, где на один виток приходится 3 аминокислотных остатка.

Молекула коллагена построена из 3 полипептидных цепей, сплетенных между собой в плотный жгут – тропоколлаген (длина 300 нм, диаметр 1,6 нм). Полипептидные цепи прочно связаны между собой через ε -аминогруппы остатков лизина. Тропоколлаген формирует крупные коллагеновые фибриллы диаметром 10-300 нм. Поперечная исчерченность фибриллы обусловлена смещением молекул тропоколлагена друг относительно друга на 1/4 их длины.

В коже фибриллы образуют нерегулярно сплетенную и очень густую сеть – выделанная кожа представляет собой почти чистый коллаген.

Э ЛАСТИН

По строению в общих чертах эластин схож с коллагеном. Находится в связках, эластичном слое сосудов. Структурной единицей является тропоэластин с молекулярной массой 72 кДа и длиной 800 аминокислотных остатков. В нем гораздо больше лизина, валина, аланина и меньше гидроксипролина. Отсутствие пролина обуславливает наличие спиральных эластичных участков.

Характерной особенностью эластина является наличие своеобразной структуры – десмозина , который своими 4-мя группами объединяет белковые цепи в системы, способные растягиваться во всех направлениях.

α -Аминогруппы и α -карбоксильные группы десмозина включаются в образование пептидных связей одного или нескольких белков.

КЛАССИФИКАЦИЯ БЕЛКОВ

В организме человека содержится свыше 50 000 индивидуальных белков, отличающихся первичной структурой, конформацией, строением активного центра и функциями. Однако до настоящего времени нет единой и стройной классификации, учитывающей различные особенности белков. В основе имеющихся классификаций лежат разные признаки. Так белки можно классифицировать:

· по форме белковых молекул (глобулярные – округлые или фибриллярные – нитевидные)

· по молекулярной массе (низкомолекулярные, высокомолекулярные)

· по выполняемым функциям (транспортные, структурные, защитные, регуляторные и др.)

· по локализации в клетке (ядерные, цитоплазматические, лизосомальные и др.)

· по структурным признакам и химическому составу белки делятся на две группы: простые и сложные. Простые белки представлены только полипептидной цепью, состоящей из аминокислот. Сложные белки имеют в своем составе белковую часть и небелковый компонент (простетическую группу). Однако и эта классификация не является идеальной, поскольку в чистом виде простые белки встречаются в организме редко.

К простым белкам относят гистоны, протамины, альбумины и глобулины, проламины и глютелины, протеиноиды.

Гистоны - тканевые белки многочисленных организмов, связаны с ДНК хроматина. Это белки небольшой молекулярной массы (11-24 тыс.Да). По электрохимическим свойствам относятся к белкам с резко выраженными основными свойствами (поликатионные белки), ИЭТ у гистонов колеблется от 9 до 12. Гистоны имеют только третичную структуру, сосредоточены в основном в ядрах клеток. Гистоны связаны с ДНК в составе дезоксирибонуклеопротеинов. Связь гистон-ДНК электростатическая, так как гистоны имеют большой положительный заряд, а цепь ДНК-отрицательный. В составе гистонов преобладают диаминомонокарбоновые аминокислоты аргинин, лизин.

Выделяют 5 типов гистонов. Деление основано на ряде признаков, главным из которых является соотношение лизина и аргинина во фракциях, четыре гистона Н2А, Н2В, Н3 и Н4 образуют октамерный белковый комплекс, который называют «нуклеосомный кор». Молекула ДНК «накручивается» на поверхность гистонового октамера, совершая 1,75 оборота (около 146 пар нуклеотидов). Такой комплекс гистоновых белков с ДНК служит основной структурной единицей хроматина, ее называют «нуклеосома» .

Основная функция гистонов - структурная и регуляторная. Структурная функция состоит в том, что гистоны участвуют в стабилизации пространственной структуры ДНК, а следовательно, хроматина и хромосом. Регуляторная функция заключается в способности блокировать передачу генетической информации от ДНК к РНК.

Протамины - своеобразные биологические заменители гистонов, но отличаются от них составом и структурой. Это самые низкомолекулярные белки (М - 4-12 тыс. Да), обладают резко выраженными основными свойствам из-за большого содержания в них аргинина (80%).

Как и гистоны, протамины - поликатионные белки. Они связываются с ДНК в хроматине спермиев и находятся в молоках рыб.

Сальмин - протамин из молоки лосося.

Скумбрин - из молоки скумбрии.

Протамины делают компактной ДНК сперматозоидов, т.е. выполняют как и гистоны, структурную функцию, однако не выполняют регуляторную.

0

Какие бывают белки

Принципы классификации белков

В настоящее время из органов и тканей человека, животных, растений и микроорганизмов выделено много разнообразных белковых препаратов. Выделены также препараты белков из отдельных частей клетки (например, из ядер, рибосом и т. д.), из неклеточного вещества (сыворотки крови, белка куриного яйца). Полученные препараты имеют различные названия. Однако для систематического изучения белки необходимо распределить по группам т. е. классифицировать. Но это встречает определенные трудности. Если в органической химии вещества классифицируют на основании их химического строения, то в биологической химии строение большинства белков во всех деталях еще не изучено. Кроме того, классифицировать белки на основании только их химического строения очень сложно. Также невозможно дать достаточно обоснованную классификацию белков по их функциям в организме. Очень часто белки, близкие по строению, обладают совершенно различными биологическими функциями (например, гемоглобин и такие ферменты, как каталаза, пероксидаза и цитохромы).

Несколько большие возможности для классификации белков предоставляются при изучении физико-химических свойств белковых веществ. Неодинаковая растворимость белков в воде и других растворителях, различные концентрации солей, необходимые для высаливания белков,- вот обычно те признаки, которые позволяют классифицировать ряд белков. Одновременно принимаются к сведению и некоторые уже известные особенности в химическом строении белков и, наконец, их происхождение и роль в организме.

Весь обширный класс белковых веществ принято разделять на две большие группы: простые белки, или протеины, и сложные белки, или протеиды. Простые белки при гидролизе распадаются только на аминокислоты, а сложные наряду с аминокислотами дают соединения другого типа, например: углеводы, липиды, гем и т. д. Таким образом, сложные белки, или протеиды, состоят из собственно белкового вещества (белковой части или простого белка) в сочетании с другими небелковыми веществами.

К простым белкам, или протеинам, относят протамины, гистоны, альбумины, глобулины, проламины, глютелины, протеиноиды и другие белки, не принадлежащие ни к одной из перечисленных групп, например многие белки-ферменты, мышечный белок - миозин и др. Группу сложных белков, или протеидов, обычно также подразделяют на несколько подгрупп в зависимости от характера содержащихся в них небелковых компонентов.

Однако подобная классификация имеет весьма относительную ценность. Новейшими исследованиями установлено, что многие простые белки в действительности связаны с небольшим количеством тех или иных небелковых соединений. Так, некоторые протеины можно было бы отнести к группе сложных белков, поскольку они, как оказалось, связаны с небольшим количеством углеводов, иногда липидов, пигментов и т. д. В то же время довольно трудно точно охарактеризовать с химической точки зрения и некоторые сложные белки. Так, например, липопротеиды в некоторых случаях представляют настолько непрочные комплексы, что их можно было бы рассматривать скорее как адсорбционные соединения простых белков с липидами, чем как индивидуальные химические вещества.

Простые белки

Наиболее простыми белками являются протамины и гистоны. Они имеют слабоосновной характер, в то время как абсолютное большинство других - кислый. Основной характер протаминов и гистонов обусловлен тем, что в состав их молекул входит большое количество диаминомонокарбоновых аминокислот, таких, как лизин и аргинин. У этих кислот одна а-аминогруппа связана пептидной связью с карбоксилом, а другая остается свободной. Она и обусловливает слабощелочную среду растворов белков. В соответствии со своим основным характером гистоны и протамины обнаруживают ряд особых, не встречающихся у других белков свойств. Так, эти белки находятся в изоэлектрической точке при щелочной реакции среды. Вот почему протамины и гистоны «свертываются» при кипячении лишь при добавлении щелочи.

Протамины, впервые выделенные Ф. Мишером, содержатся в большом количестве в сперматозоидах рыб. Они характеризуются очень высоким содержанием основных аминокислот (до 80%), особенно аргинина. Кроме того, в протаминах отсутствуют такие аминокислоты, как триптофан, метионин, цистеин, а в большинстве протаминов также и тирозин, и фенилаланин. Протамины - относительно небольшие белки. Они имеют молекулярную массу от 2000 до 12 000. Из ядер мышечных клеток их выделить не удалось.

Гистоны обладают менее основными свойствами, чем протамины. В них содержится лишь 20-30 % диаминомонокарбоновых кислот. Аминокислотный состав гистонов значительно более разнообразен, чем протаминов, однако в них также отсутствует триптофан или его имеется очень небольшое количество. В состав гистонов входят также модифицированные, измененные аминокислотные остатки, например: О-фосфосерин, метилированные производные аргинина и лизина, ацетилированные по свободной аминогруппе производные лизина.

Много гистонов содержится в зобной железе, ядрах клеток железистых тканей. Гистоны не являются однородными белками и могут быть разделены на ряд фракций, отличающихся по химическому составу и биологическим свойствам друг от друга. Классификация гистонов основана на относительных количествах лизина и аргинина. Гистон Н1 очень богат лизином. Для гистона Н2 характерно умеренное содержание этой аминокислоты, причем существует два типа этого гистона - Н2А и Н2В. Гистон НЗ умеренно богат аргинином и содержит цистеин. Гистон Н4 богат аргинином и глицином.

Гистоны одного и того же типа, полученные из различных животных и растений, имеют очень сходные аминокислотные последовательности. Такой консерватизм в эволюции, по-видимому, служит сохранению последовательности, обеспечивающей существенные и специфические функции. Это лучше всего подтверждается тем фактом, что аминокислотные последовательности гистона Н4 из проростков гороха и тимуса быка отличаются только двумя из 102 аминокислотных остатков, присутствующих в молекуле.

Благодаря наличию большого количества свободных аминогрупп протамины и гистоны образуют ионные связи с остатками фосфорной кислоты, входящей в состав ДНК, и способствуют компактной укладке двойной спирали ДНК в образованном комплексе ДНК с данными белками. Комплекс ДНК с гистонами - хроматин содержит ДНК и гистоны в примерно равном количественном отношении.

Кроме взаимодействия с ДНК, гистоны также реагируют друг с другом. Экстракцией хлоридом натрия из хроматина был выделен тетрамер, состоящий из двух молекул гистона НЗ и двух молекул гистона Н4. В этих же условиях гистоны Н2А и Н2В могут быть выделены вместе в виде димера. Современная модель структуры хроматина предполагает, что один тетрамер и два димера взаимодействуют с 200 парами оснований ДНК, что составляет примерно участок длиной около 70 нм. При этом образуется сферическая структура диаметром 11 нм. Считается, что хроматин представляет собой подвижную цепь, составленную из таких единиц. Эта предположительная модель подтверждается различными методами исследования.

Альбумины и глобулины являются хорошо изученными белками, входящими в состав всех животных тканей. Основная масса белков, находящихся в плазме крови, в сыворотке молока, в яичном белке и др., состоит из альбуминов и глобулинов. Их соотношение в различных тканях удерживается в определенных границах.

Альбумины и глобулины отличаются друг от друга по физико-химическим свойствам. Одним из распространенных методов разделения альбуминов и глобулинов является их высаливание с помощью сульфата аммония. Если к раствору белка добавить такое количество сульфата аммония, которое содержится в том же объеме разведенного пополам насыщенного раствора этой соли, из раствора выделяются глобулины. Если их отфильтровать и к фильтрату продолжать добавлять кристаллический сульфат аммония до полного насыщения, в осадок выпадает альбумин. Таким образом, глобулины осаждаются в полунасыщенном растворе сульфата аммония, в то время как альбумины - в насыщенном растворе.

Изучение альбуминов и глобулинов обнаружило и другие различия в их физико-химических свойствах. Оказалось, что альбумины способны растворяться в дистиллированной воде, в то время как для растворения глобулинов к воде нужно добавить небольшое количество соли. На основании этого возможно отделение глобулинов от альбуминов путем диализа белкового раствора. Для этого раствор белка, помещенный в мешочек из полупроницаемого материала, например целлофана, опускают в дистиллированную воду. Раствор белка постепенно обессоливается, а глобулины выпадают в осадок. Их отделяют от оставшихся в растворе альбуминов. Глобулины можно осадить и насыщенным раствором сульфата натрия, в то время как альбумины растворяются в нем.

В больших количествах альбумины и глобулины выделяются с лечебными целями из крови доноров. Препараты альбумина крови человека используются для введения больным, потерявшим много крови, как кровезаменители. Препараты у-глобулина используется как для профилактики, так и для лечения некоторых инфекционных заболеваний. В настоящее время для выделения препаратов альбуминов и глобулинов из крови доноров разработаны методы раздельного осаждения этих белков, основанные на их различной растворимости в растворах, содержащих этиловый спирт в различных концентрациях, на холоде. Таким методом получают высокоочищенные препараты альбумина и разных фракций глобулинов, в дальнейшем используемых в лечебных целях.

Среди простых белков растительного происхождения вызывают интерес глютелины и проламины. Они содержатся в семенах злаков, образуя основную массу клейковины. Клейковина может быть выделена в виде клейкой массы путем растирания муки с водой и постепенного отмывания крахмала медленным током воды. Клеящие свойства крахмального клейстера зависят от наличия в нем клейковины. Чем больше клейковины содержится в зерне злаков, тем более ценным считается это зерно. К глютелинам относятся, например, оризенин, получаемый из риса, и глютенин, получаемый из пшеницы.

Одним из важнейших проламинов и наиболее характерным белком эндоспермы пшеничного зерна является глиадин. Глиадин нерастворим в воде и солевых растворах, но в отличие от других белков растворяется в растворе спирта (70%) и с его помощью извлекается из зерна. Из других представителей проламинов можно назвать гордеин, получаемый из ячменя, и зеин - из кукурузы. Эти белки, подобно глиадину, экстрагируются из клейковины раствором спирта (70-80 %). Всепроламины характеризуются относительно высоким содержанием пролина.

Отличительной особенностью белков опорных тканей является их полная нерастворимость в воде, солевых растворах, разведенных кислотах и щелочах. Их объединили под общим названием протеиноидов, что значит белковоподобные. Эти белки относятся к фибриллярным, или волокнистым, белкам, частицы которых имеют форму более или менее вытянутых волокон или нитей. Вследствие нерастворимости протеиноидов в воде на них не действуют ферменты пищеварительных соков. Протеиноиды, как правило, непригодны для питания. К ним относятся, например, белки рогов, копыт, шерсти, волос и др. В то же время ряд белков опорных тканей способен перевариваться пищеварительными соками. Это белки костной ткани, сухожилий, хрящей.

Из отдельных представителей протеиноидов большой интерес представляет коллаген, входящий в состав соединительной ткани (рис. 1). Простейшим методом его получения является обработка костей разведенной соляной кислотой. При этом минеральные вещества переходят в раствор, а коллаген остается. Биологическим предшественником коллагена является проколлаген. Он наряду с коллагеном найден в коже и других тканях. Этот белок удалось выделить в кристаллическом виде. От коллагена он отличается как своим аминокислотным составом (в нем много содержится аминокислоты пролина, в то время как в коллагене - гидроксипролина), так и тем, что расщепляется всеми ферментами, гидролизующими белки.

Белковое вещество сухожилий и связок носит название эластина. Этот протеиноид несколько легче поддается действию пищеварительных соков, чем коллаген.

Кератины являются характерными протеиноидами волос, рогов, ногтей, эпидермиса и шерсти. В их состав входит относительно большое количество цистеина и цистина.

Фиброины являются протеиноидами, вырабатываемыми в прядильных железах насекомых: пауков, гусениц некоторых бабочек (шелкопрядов) и др. Фиброин шелка, составляющий основную массу шелковой нити, выделяется в жидком виде, но затем быстро затвердевает. Шелковые нити, идущие на изготовление тканей, представляют собой фиброин, освобожденный от клея серицина.

Сложные белки

Важнейшими сложными белками являются нуклео-протеиды, хромопротеиды, гликопротеиды, фосфопротеиды, липопротеиды. К группе сложных белков относятся белки, в состав которых, помимо белковой части, входит та или иная небелковая группа - простетическая группа. Она освобождается при гидролизе протеидов наряду с продуктами гидролитического расщепления белковой молекулы- аминокислотами. Так, нуклеоп роте иды дают при гидролизе нуклеиновые кислоты и продукты их распада, гликопротеиды - углеводы и близкие к углеводам вещества, фосфопротеиды - фосфорную кислоту, хромопротеиды - окрашенную группировку, чаще всего гем, липопротеиды - различные липиды. Сложные белки-ферменты можно также расщепить на белковую часть и небелковую простетическую группу. Все эти простетические группы, более или менее прочно связанные с белковым компонентом сложного белка, в большинстве случаев хорошо изучены с химической точки зрения.

Рис. 1. Схема структуры коллагена.

Среди сложных белков очень большой интерес представляют нуклеопротеиды. Значение нуклеопротеидов определяется прежде всего тем, что из этих белков, как показывает их название, состоит основная масса чрезвычайно важной части клетки - клеточного ядра. Ядро является центром управления жизнедеятельности клетки. Такие процессы, как деление клетки, передача наследственной информации, управление биосинтезом белков, осуществляются при участии ядерных структур. Нуклео-протеиды, а точнее дезоксирибонуклеопротеиды, могут быть выделены из зобной железы, селезенки, из сперматозоидов, ядерных эритроцитов птиц и некоторых других тканей. В их составе, помимо белковой части, находится дезоксирибонуклеиновая кислота, ответственная за хранение и передачу наследственной информации.

В то же время другой тип нуклеопротеидов - рибонуклеопротеиды входят в состав по преимуществу цитоплазмы клеток, принимая непосредственное участие в образовании важнейших биологических систем, в первую очередь системы биосинтеза белка. В клетке рибонуклеопротеиды являются составной частью клеточной органеллы - рибосомы.

Дезоксирибонуклеиновая кислота (ДНК) входит в хроматин - сложный нуклеопротеид, из которого состоят хромосомы. Кроме того, в клетке существует несколько типов рибонуклеиновой кислоты (РНК). Есть информационная РНК (иРНК), которая синтезируется при считывании информации с ДНК и на которой потом синтезируется полипептидная цепь; транспортная РНК (тРНК), доставляющая аминокислоты к иРНК, и рибосомальная РНК (рРНК), входящая в состав клеточных органелл - рибосом, которые образуют комплексы с иРНК В этих комплексах при участии всех трех типов РНК и аминокислот происходит синтез белка.

Нуклеиновые кислоты, находящиеся в составе нуклеотидов, представляют огромный интерес и как компоненты вирусов, занимающих промежуточное место между молекулами сложных белков и самыми мелкими болезнетворными микроорганизмами. Многие вирусы могут быть получены в кристаллической форме. Эти кристаллы представляют собой совокупность вирусных частиц, а те в свою очередь состоят из белкового «футляра» и находящейся внутри него спирализованной молекулы нуклеиновой кислоты (рис. 2). Белковый «футляр» (оболочка вируса) построен из большого количества субъединиц - молекул белка, соединенных между собой с помощью ионных и гидрофобных связей. Причем связь между белковой оболочкой и нуклеиновой кислотой у вирусных частиц весьма непрочна. При проникновении некоторых вирусов в клетку белковая оболочка остается на поверхности, нуклеиновая кислота внедряется в клетку и заражает ее. При участии этой нуклеиновой кислсты в клетке синтезируются белки вируса и вирусная нуклеиновая кислота, что приводит в конечном итоге к образованию большого количества новых вирусных частиц и гибели зараженной клетки. Все это позволяет считать вирусную частицу - гигантскую молекулу сложного белка-нуклеопротеида - своеобразной сверхмолекулярной структурой. Вирусы - это промежуточное звено между химическими веществами и сложными биологическими системами. Вирусы, как нуклеопротеиды, как бы заполняют разрыв между «химией» и «биологией», между веществом и существом.

Белковыми компонентами сложных белков клеточного ядра, помимо уже известных нам белков основного характера, гистонов и протаминов, являются и некоторые кислые белки, так называемые негистоновые белки хроматина, основной функцией которых является регуляция активности дезоксирибонуклеиновой кислоты, как основного хранителя генетической информации.

Рис. 2. Вирус мозаичной болезни табака: 1 - спираль РНК; 2 - субъединицы белка, образующие защитный футляр.

Хромопротеиды - сложные белки, которые состоят из простого белка и связанного с ним окрашенного химического соединения. Это соединение может принадлежать к самым различным типам химических веществ, однако чаще всего такое органическое соединение образует еще и комплекс с металлом - железом, магнием, кобальтом.

К хромопротеидам относятся такие важные белки, как гемоглобины, при помощи которых осуществляется перенос кислорода с кровью в ткани, и миоглобин - белок мышечных клеток позвоночных и беспозвоночных. Миоглобин в четыре раза меньше, чем гемоглобин. Он забирает кислород у гемоглобина и снабжает им мышечные волокна. Кроме того, к хромопротеидам относится гемоцианин, переносящий кислород у многих беспозвоночных. Этот гигантский по размерам молекулы белок содержит медь вместо железа, как в гемоглобине, и потому имеет голубой цвет. Поэтому кровь ракообразных, кальмаров, осьминогов голубая в отличие от красной крови животных.

В растениях содержится хромопротеид зеленого цвета - хлорофилл. Его небелковая часть очень напоминает небелковую часть гемоглобина, только вместо железа она содержит магний. С помощью хлорофилла растения фиксируют энергию солнечных лучей и используют ее для фотосинтеза.

Фосфопротеиды - это сложные белки, при гидролизе которых наряду с аминокислотами получается более или менее значительное количество фосфорной кислоты. Важнейшим представителем этой группы белков является казеиноген молока. Помимо казеиногена, к группе фосфопротеидов относятся ововителлин - белок, выделенный из яиц, ихтулин - белок, полученный из рыбьей икры, и некоторые другие. Большой интерес представляют фосфопротеиды, обнаруженные в клетках мозга. Установлено, что фосфор этих белков обладает очень высокой скоростью обновления.

Гликопротеиды - сложные белки, небелковая группа которых является производным углеводов. Отделение углеводного компонента от гликопротеидов часто сопровождается полным или частичным гидролизом гликопротеида. Таким образом, при гидролизе различных гликопротеидов

получаются наряду с аминокислотами и продукты гидлиза углеводной группы: манноза, галактоза, фукоза, ксозамины, глюкуроновая, нейраминовая кислоты и др. составе простетической группы различных гликопроидов обычно находятся не все перечисленные вещества, некоторых гликопротеидов углеводная часть непрочно связана с белковым компонентом и легко от него отляется. Простетические группы некоторых гликопротеинов, известные под общим названием мукополисахаридов (более современное название - гликозаминогликалы), встречаются в тканях и в свободном виде. Такими важнейшими мукополисахаридами являются гиалуроноваяя и хондроитинсерная кислоты, входящие в состав соединительной ткани.

Гликопротеиды входят в состав всех тканей и носят соответственно названия: хондромукоиды (из хряща), стеомукоиды (из костей), овомукоиды (из яичного белка), муцин (в слюне). Они присутствуют также в связках и сухожилиях и имеют большое значение. Например, высокая вязкость слюны, связанная с наличием в ней муцина, облегчает проскальзывание пищи в желудок, защищая слизистую оболочку полости рта от механических повреждений и раздражений химическими веществами.

В настоящее время принято разделять все гликоротеиды на две большие группы: собственно гликопротеиды и полисахарид-белковые комплексы. Первые имеют небольшое число разных моносахаридных остатков, лишенных повторяющегося звена и присоединенных ковалентно к полипетидной цепи. Большинство сывороточых белков является гликопротеидами. Полагают, что эти гетерополисахаридные цепочки являются для сывороточных белков как бы почтовыми открытками, по которым белки распознаются теми или иными тканями. В то же время гетерополисахаридные цепочки, находящиеся на поверхности клеток, являются адресами, по которым эти белки следуют, чтобы попасть в клетки именно той ткани, не другой.

Полисахарид-белковые комплексы имеют большое количество углеводных остатков в полисахаридной части, в ней всегда можно выделить повторяющиеся звенья, в одних случаях связь белок - углевод бывает ковалентная, в других - электростатическая. Из полисахарид-белковых комплексов большую роль играют протеогликаны. Они образуют внеклеточную основу соединительной ткани и могут составлять до 30 % сухой массы ткани. Это вещества, содержащие большое количество отрицательно заряженных группировок, множество различных гетерополисахаридных боковых цепей, ковалентно связанных с полипептидным остовом. В отличие от обычных гликопротеидов, которые содержат несколько процентов углеводов, в протеогликанах до 95 % и более углеводов. По своим физико-химическим свойствам они больше напоминают полисахариды, чем белки. Полисахаридные группы протеогликанов можно получить с хорошим выходом после обработки их протеолитическими ферментами. Протеогликаны выполняют несколько биологических функций: во-первых, механическую, так как они защищают суставные поверхности и служат смазочным материалом; во-вторых, являются ситом, задерживающим крупномолекулярные частицы, и способствуют проникновению через протеогликановый барьер только низкомолекулярных частиц; в-третьих, связывают катионы, причем настолько прочно, что даже катионы К + и Na + , связанные с протеогликанами, почти не диссоциируют и их ионные свойства не проявляются. Катионы же Са 2+ не просто связываются протеогликанами, а и способствуют объединению их молекул.

В клеточных оболочках микроорганизмов содержатся полисахарид-белковые комплексы еще более прочные. В этих комплексах вместо белков находятся пептиды, и поэтому они носят название пептидогликанов. Практически вся клеточная оболочка представляет собой одну гигантскую макромолекулу мешковидного типа - пептидогликан, причем его структура может несколько варьировать в зависимости от вида бактерии. Если углеводная часть пептидогликана у бактерий разного вида практически одинакова, то в белковой части происходит варьирование как аминокислот, так и их последовательности в зависимости от вида бактерий. Связи между углеводами и пептидами в пептидогликанах ковалентные и очень прочные.

Сложные белки липопротеиды состоят из белковой части и связанной с ней в различных соотношениях липидной - жировой части. Липопротеиды обычно нерастворимы в эфире, бензоле, хлороформе и других органических растворителях. Однако известны соединения липидов с белками, которые по своим физико-химическим свойствам стоят уже ближе к типичным липидам и липоидам, т. е. жироподобным веществам, чем к белкам. Такие вещества называются протеолипидами.

Способностью соединяться с липидами с образованием более или менее прочных комплексов обладает целый ряд белков: альбумины, некоторые фракции глобулинов, белки клеточных мембран и некоторых микроструктур клетки. В живом организме с различными липидами и липоидами могут быть связаны простые белки. Чаще всего связь между белком и липидом в таких случаях нековалентная, но тем не менее она прочная, и даже при обработке органическими растворителями в мягких условиях липиды не отделяются от белка. Это возможно только при денатурации белковой части.

Липопротеиды играют важную роль в образовании структурных компонентов клетки, особенно в формировании разнообразных мембран клетки: митохондриальной, микросомальной и т. д. Очень много липопротеидов входит в состав нервной ткани. Они выделены и из белого, и из серого вещества головного мозга. В крови человека и животных также имеются липопротеиды.

Среди белков, наделенных каталитическими функциями,- ферментов можно также встретить не только простые, но и сложные белки, состоящие из белкового компонента и небелковой группы. К таким протеидам относятся ферменты, катализирующие различные окислительно-восстановительные процессы. Небелковые группы некоторых из них близки по строению и свойствам к небелковым группам гемоглобина - гему и обладают выраженной окраской, что позволяет их отнести к группе хромопротеидов. Существует целый ряд белков-ферментов, которые содержат атомы того или иного металла (железа, меди, цинка и др.), непосредственно связанные с белковой структурой. Эти сложные белки-ферменты называют металлопротеидами.

К железосодержащим белкам относятся ферритин, трансферрин, гемосидерин. Трансферрин - растворимый в воде железопротеид с молекулярной массой около 90 000, находящийся главным образом в сыворотке крови во фракции в-глобулинов. Белок содержит 0,13 % железа; это примерно в 150 раз меньше, чем в ферритине. Железо соединяется с белком с помощью гидроксильных групп тирозина. Трансферрин - физиологический переносчик железа в организме.

Известен ряд ферментов, активность которых зависит от присутствия металлов в составе белковой молекулы. Это алкогольдегидрогеназа, содержащая цинк, фосфогидролазы, включающие магний, цитохромоксидаза, содержащая медь, и другие ферменты.

Кроме перечисленных групп белков, можно выделить и более сложные надмолекулярные комплексы, в составе которых одновременно присутствуют белки, липиды, углеводы и нуклеиновые кислоты. В мозговой ткани, например, содержатся липонуклеопротеиды, липогликопротеиды, липогликонуклеопротеиды.

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.