Биосинтез белка. Структура одного белка определяется. Белки: строение белков и функции Уровни организации и функции белков

Белки и их функции.

Изучим основные вещества составляющие наши с вами организмы. Одни из них самых важных это белки.

Белки (протеины, полипептиды) – углеродные вещества, состоящие из соединенных в цепочку аминокислот . Являются обязательной составной частью всех клеток.

Аминокислоты - углеродные соединения, в молекулах которых одновременно содержатся карбоксильные (-COOH) и аминные (NH2) группы.

Соединение, состоящее из большого числа аминокислот, называется - полипептидом . Каждый белок по своему химическому строению является полипептидом. Некоторые белки состоят из нескольких полипептидных цепей. В составе большинства белков находится в среднем 300-500 остатков аминокислот. Известно несколько очень коротких природных белков, длиной в 3-8 аминокислот, и очень длинных биополимеров, длиной более чем в 1500 аминокислот.

Свойства белков, определяет их аминокислотный состав, в строго зафиксированной последовательности, а аминокислотный состав в свою очередь определяется генетическим кодом. При создании белков используется 20 стандартных аминокислот.

Структура белков.

Выделяют несколько уровней:

- Первичная структура - определяется порядком чередования аминокислот в полипептидной цепи.

Двадцать разных аминокислот можно уподобить 20 буквам химического алфавита, из которых составлены «слова» длиной в 300-500 букв. С помощью 20 букв можно написать безграничное множество таких длинных слов. Если считать, что замена или перестановка хотя бы одной буквы в слове придает ему новый смысл, то число комбинаций в слове длиной в 500 букв составит 20500.

Известно, что замена даже одного аминокислотного звена другим в белковой молекуле изменяет ее свойства. В каждой клетке содержится несколько тысяч разных видов белковых молекул, и для каждого из них характерна строго определенная последовательность аминокислот. Именно порядок чередования аминокислот в данной белковой молекуле определяет ее особые физико-химические и биологические свойства. Исследователи умеют расшифровывать последовательность аминокислот в длинных белковых молекулах и синтезировать такие молекулы.

- Вторичная структура – белковые молекулы в виде спирали, с одинаковыми расстояниями между витками.

Между группами N-Н и С=О, расположенными на соседних витках, возникают водородные связи. Они повторенные многократно, скрепляют регулярные витки спирали.

- Третичная структура – образование спиралиевого клубка.

Этот клубок образован закономерным переплетением участков белковой цепи. Положительно и отрицательно заряженные группы аминокислот притягиваются и сближают даже далеко отстоящие друг от друга участки белковой цепи. Сближаются и иные участки белковой молекулы, несущие, например, «водоотталкивающие» (гидрофобные) радикалы.

Для каждого вида белка характерна своя форма клубка с изгибами и петлями. Третичная структура зависит от первичной структуры, т. е. от порядка расположения аминокислот в цепи.
- Четвертичная структура – сборный белок, состоящий из нескольких цепей, отличающихся по первичной структуре.
Объединяясь вместе, они создают сложный белок, обладающий не только третичной, но и четвертичной структурой.

Денатурация белка.

Под действием ионизирующей радиации, высокой температуры, сильного взбалтывания, экстремальных значений рН (концентрация йонов водорода), а также ряда органических растворителей, таких, как спирт или ацетон, белки изменяют свое естественное состояние. Нарушение природной структуры белка называют денатурацией. Подавляющее большинство белков утрачивает при этом биологическую активность, хотя первичная структура их после денатурации не меняется. Дело в том, что в процессе денатурации нарушаются вторичная, третичная и четвертичная структуры, обусловленные слабыми взаимодействиями между аминокислотными остатками, а ковалентные пептидные связи (с объединением электронов) не разрываются. Необратимую денатурацию можно наблюдать при нагревании жидкого и прозрачного белка куриного яйца: он становится плотным и непрозрачным. Денатурация может быть и обратимой. После устранения денатурирующего фактора многие белки способны вернуть естественную форму, т.е. ренатурировать.

Способность белков к обратимому изменению пространственной структуры в ответ на действие физических или химических факторов лежит в основе раздражимости - важнейшего свойства всех живых существ.

Функции белков.

Каталитическая.

В каждой живой клетке происходят непрерывно сотни биохимических реакций. В ходе этих реакций идут расщепление и окисление поступающих извне питательных веществ. Полученную вследствие окисления энергию питательных веществ и продукты их расщепления клетка использует для синтеза необходимых ей разнообразных органических соединений. Быстрое протекание таких реакций обеспечивают биологические катализаторы, или ускорители реакций, - ферменты. Известно более тысячи разных ферментов. Все они белки.
Белки-ферменты – ускоряют протекающие реакции в организме. Ферменты учавствуют в расщеплении сложных молекул (катаболизм) и их синтезе (анаболизм) а также создания и ремонте ДНК и матричного синтеза РНК.

Структурная.

Структурные белки цитоскелета, как своего рода арматура, придают форму клеткам и многим органоидам и участвуют в изменении формы клеток. Коллаген и эластин - основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.

Защитная.

  1. Физическая защита. (пример: коллаген - белок, образующий основу межклеточного вещества соединительных тканей)
  1. Химическая защита. Связывание токсинов белковыми молекулами обеспечивает их детоксикацию. (пример: ферменты печени, расщепляющие яды или переводящие их в растворимую форму, что способствует их быстрому выведению из организма)
  1. Иммунная защита. На попадание бактерий или вирусов в кровь животных и человека организм реагирует выработкой специальных защитных белков - антител. Эти белки связываются с чужеродными для организма белками возбудителей заболеваний, чем подавляется их жизнедеятельность. На каждый чужеродный белок организм вырабатывает специальные «антибелки» - антитела.
Регуляторная.

Гормоны переносятся кровью. Большинство гормонов животных - это белки или пептиды. Связывание гормона с рецептором является сигналом, запускающим в клетке ответную реакцию. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Примером таких белков служит инсулин , который регулирует концентрацию глюкозы в крови.

Клетки взаимодействуют друг с другом с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся, например, цитокины и факторы роста.

Цитокины - небольшие пептидные информационные молекулы. Они регулируют взаимодействия между клетками, определяют их выживаемость, стимулируют или подавляют рост, дифференцировку, функциональную активность и программируемую клеточную смерть, обеспечивают согласованность действий иммунной, эндокринной и нервной систем.

Транспортная.

Только белки осуществляют перенос веществ в крови, например, липопротеины (перенос жира), гемоглобин (транспорт кислорода), трансферрин (транспорт железа) или через мембраны- Na+,К+-АТФаза (противоположный трансмембранный перенос ионов натрия и калия), Са2+-АТФаза (выкачивание ионов кальция из клетки).

Рецепторная.

Белковые рецепторы могут как находиться в цитоплазме, так и встраиваться в клеточную мембрану. Одна часть молекулы рецептора воспринимает сигнал, которым чаще всего служит химическое вещество, а в некоторых случаях - свет, механическое воздействие (например, растяжение) и другие стимулы.

Строительная.

Животные в процессе эволюции утратили способность осуществлять синтез десяти особенно сложных аминокислот, называемых незаменимыми. Они получают их в готовом виде с растительной и животной пищей. Такие аминокислоты содержатся в белках молочных продуктов (молоко, сыр, творог), в яйцах, рыбе, мясе, а также в сое, бобах и некоторых других растениях. В пищеварительном тракте белки расщепляются до аминокислот, которые всасываются в кровь и попадают в клетки. В клетках из готовых аминокислот строятся собственные белки, характерные для данного организма. Белки являются обязательным компонентом всех клеточных структур и в этом состоит их важная строительная роль.

Энергетическая.

Белки могут служить источником энергии для клетки. При недостатке углеводов или жиров окисляются молекулы аминокислот. Освободившаяся при этом энергия используется на поддержание процессов жизнедеятельности организма. При длительном голодании используются белки мышц, лимфоидных органов, эпителиальных тканей и печени.

Моторная (двигательная).

Целый класс моторных белков обеспечивает движения организма, например, сокращение мышц, в том числе движение миозиновых мостиков в мышце, перемещение клеток внутри организма (например, амебоидное движение лейкоцитов).

На самом деле это очень краткое описание функций белков, которое только наглядно может продемонстрировать их функции и значимость в организме.

Немного видео для понимания о белках:

Биосинтез белка.

1. Структура одного белка определяется:

1)группой генов 2)одним геном

3)одной молекулой ДНК 4)совокупностью генов организма

2. Ген кодирует информацию о последовательности мономеров в молекуле:

1)т-РНК 2) АК 3) гликогена 4) ДНК

3. Антикодонами называются триплеты:

1)ДНК 2) т-РНК 3)и-РНК 4) р-РНК

4. Пластический обмен состоит преимущественно из реакций:

1)распада органических веществ 2)распада неорганических веществ

3)синтеза органических веществ 4)синтеза неорганических веществ

5. Синтез белка в прокариотической клетке происходит:

1)на рибосомах в ядре 2)на рибосомах в цитоплазме 3)в клеточной стенке

6. Процесс трансляции происходит:

1)в цитоплазме 2)в ядре 3)в митохондриях

4)на мембранах шероховатой эндоплазматической сети

7. На мембранах гранулярной эндоплазматической сети происходит синтез:

1)АТФ; 2)углеводов; 3) липидов; 4)белков.

8. Один триплет кодирует:

1.одну АК 2 один признак организма 3. несколько АК

13. Этапы биосинтеза белка.

1.транскрипция, трансляция 2.трансформация, трансляция

3.трансорганизация, транскрипция

14. Антикодон т-РНК состоит из нуклеотидов УЦГ. Какой триплет ДНК ему комплементарен?

1.УУГ 2. ТТЦ 3. ТЦГ

2) молекула, состоящая из двух новых цепей ДНК

4) дочерняя молекула, состоящая из одной старой и одной новой цепи ДНК

18. Матрицей для синтеза молекулы иРНК при транскрипции служит:

1) вся молекула ДНК 2) полностью одна из цепей молекулы ДНК

4) в одних случаях одна из цепей молекулы ДНК, в других– вся молекула ДНК.

19.Процесс самоудвоения молекулы ДНК.

1.репликация 2.репарация

3. реанкорнация

20. При биосинтезе белка в клетке энергия АТФ:

1) расходуется 2) запасается

21. В соматических клетках многоклеточного организма:

1) различный набор генов и белков 2) одинаковый набор генов и белков

3) одинаковый набор генов, но разный набор белков

23. Какой из процессов не происходит в клетках любого строения и функции:

1)синтез белков 2) обмен веществ 3)митоз 4) мейоз

24. Понятие «транскрипция» относится к процессу:

1)удвоения ДНК 2)синтеза и-РНК на ДНК

3)перехода и-РНК на рибосомы 4)создания белковых молекул на полисоме

25. Участок молекулы ДНК, несущий информацию об одной молекуле белка - это:

1)ген 2)фенотип 3)геном 4)генотип

26. Транскрипция у эукариот происходит в:

1)цитоплазме 2)эндоплазматической мембране 3)лизосомах 4)ядре

27.Синтез белка происходит в:

1)гранулярном эндоплазматическом ретикулуме

2)гладком эндоплазматическом ретикулуме 3)ядре 4) лизосомах

28. Одна аминокислота кодируется:

1)четырьмя нуклеотидами 2)двумя нуклеотидами

29. Триплету нуклеотидов АТЦ в молекуле ДНК будет соответствовать кодон молекулы и-РНК:

1) ТАГ 2) УАГ 3) УТЦ 4) ЦАУ

30. Знаки препинания генетического кода:

1.кодируют определённые белки 2. запускают синтез белка

3. прекращают синтез белка

31. Процесс самоудвоения молекулы ДНК.

1.репликация 2.репарация 3.реанкорнация

32. Функция и-РНК в процессе биосинтеза.

1.хранение наследственной информации 2.транспорт АК на рибосомы

33. Процесс, когда т-РНК приносят аминокислоты на рибосомы.

1.транскрипция 2.трансляция 3.трансформация

34. Рибосомы, синтезирующие одну и ту же белковую молекулу.

1.хромосома 2.полисома 3.мегахромосома

35. Процесс, при котором аминокислоты образуют белковую молекулу.

1.транскрипция 2.трансляция 3.трансформация

36. К реакциям матричного синтеза относят…

1.репликацию ДНК 2.транскрипцию, трансляцию 3.оба ответа правильные

37.Один триплет ДНК несет информацию о:

1.Последовательности аминокислот в молекуле белка


2.Месте определенной АК в белковой цепи
3.Признаке конкретного организма
4.Аминокислоте, включаемой в белковую цепь

38. В гене закодирована информация о:

1) строении белков, жиров и углеводов 2) первичной структуре белка

3) последовательности нуклеотидов в ДНК

4) последовательности аминокислот в 2-х и более молекулах белков

39. Синтез иРНК начинается с:

1) разъединения ДНК на две нити 2) взаимодействия фермента РНК - полимеразы и гена

40. Транскрипция происходит:

1) в ядре 2) на рибосомах 3) в цитоплазме 4) на каналах гладкой ЭПС

41. Синтез белка не идет на рибосомах у:

1) возбудителя туберкулеза 2) пчелы 3) мухомора 4) бактериофага

42.При трансляции матрицей для сборки полипептидной цепи белка служат:

1) обе цепочки ДНК 2) одна из цепей молекулы ДНК

3) молекула иРНК 4) в одних случаях одна из цепей ДНК , в других– молекула иРНК

Биосинтез белка.

1. Структура одного белка определяется:

1)группой генов 2)одним геном

3)одной молекулой ДНК 4)совокупностью генов организма

2. Ген кодирует информацию о последовательности мономеров в молекуле:

1)т-РНК 2) АК 3) гликогена 4) ДНК

3. Антикодонами называются триплеты:

1)ДНК 2) т-РНК 3)и-РНК 4) р-РНК

4. Пластический обмен состоит преимущественно из реакций:

1)распада органических веществ 2)распада неорганических веществ

3)синтеза органических веществ 4)синтеза неорганических веществ

5. Синтез белка в прокариотической клетке происходит:

1)на рибосомах в ядре 2)на рибосомах в цитоплазме 3)в клеточной стенке

4)на внешней поверхности цитоплазматической мембраны

6. Процесс трансляции происходит:

1)в цитоплазме 2)в ядре 3)в митохондриях

4)на мембранах шероховатой эндоплазматической сети

7. На мембранах гранулярной эндоплазматической сети происходит синтез:

1)АТФ; 2)углеводов; 3) липидов; 4)белков.

8. Один триплет кодирует:

1.одну АК 2 один признак организма 3. несколько АК

9. Синтез белка завершается в момент

1.узнавание кодона антикодоном 2.появление на рибосоме «знака препинания»

3.поступление и-РНК на рибосому

10. Процесс, в результате которого происходит считывание информации с молекулы ДНК.

1.трансляция 2.транскрипция 3.трансформация

11. Свойства белков определяется…

1.вторичной структурой белка 2.первичной структурой белка

3.третичной структурой белка

12. Процесс, при котором антикодон узнаёт кодон на и-РНК

13. Этапы биосинтеза белка.

1.транскрипция, трансляция 2.трансформация, трансляция

3.трансорганизация, транскрипция

14. Антикодон т-РНК состоит из нуклеотидов УЦГ. Какой триплет ДНК ему комплементарен ?

1.УУГ 2. ТТЦ 3. ТЦГ

15. Количество т-РНК, участвующих в трансляции, равно количеству:

1.Кодонов и-РНК, шифрующих аминокислоты 2. Молекул и-РНК

3 Генов, входящих в молекулу ДНК 4. Белков, синтезируемых на рибосомах

16. Установите последовательность расположения нуклеотидов и-РНК при транскрипции с одной из цепей ДНК: А-Г-Т-Ц-Г

1) У 2) Г 3) Ц 4) А 5) Ц

17. При репликации молекулы ДНК образуется:

1) нить, распавшаяся на отдельные фрагменты дочерних молекул

2) молекула, состоящая из двух новых цепей ДНК

3) молекула, половина которой состоит из нити иРНК

4) дочерняя молекула, состоящая из одной старой и одной новой цепи ДНК

18. Матрицей для синтеза молекулы иРНК при транскрипции служит:

1) вся молекула ДНК 2) полностью одна из цепей молекулы ДНК

3) участок одной из цепей ДНК

4) в одних случаях одна из цепей молекулы ДНК, в других– вся молекула ДНК.

19.Процесс самоудвоения молекулы ДНК.

1.репликация 2.репарация

3. реанкорнация

20. При биосинтезе белка в клетке энергия АТФ:

1) расходуется 2) запасается

3) не расходуется и не выделяется

21. В соматических клетках многоклеточного организма:

1) различный набор генов и белков 2) одинаковый набор генов и белков

3) одинаковый набор генов, но разный набор белков

4) одинаковый набор белков, но разный набор генов

22.. Один триплет ДНК несет информацию о:

1)последовательности аминокислот в молекуле белка

2)признаке организма 3)аминокислоте в молекуле синтезируемого белка

4)составе молекулы РНК

23. Какой из процессов не происходит в клетках любого строения и функции:

1)синтез белков 2) обмен веществ 3)митоз 4) мейоз

24. Понятие «транскрипция» относится к процессу:

1)удвоения ДНК 2)синтеза и-РНК на ДНК

3)перехода и-РНК на рибосомы 4)создания белковых молекул на полисоме

25. Участок молекулы ДНК, несущий информацию об одной молекуле белка - это:

1)ген 2)фенотип 3)геном 4)генотип

26. Транскрипция у эукариот происходит в:

1)цитоплазме 2)эндоплазматической мембране 3)лизосомах 4)ядре

27.Синтез белка происходит в:

1)гранулярном эндоплазматическом ретикулуме

2)гладком эндоплазматическом ретикулуме 3)ядре 4) лизосомах

28. Одна аминокислота кодируется:

1)четырьмя нуклеотидами 2)двумя нуклеотидами

3)одним нуклеотидом 4) тремя нуклеотидами

29. Триплету нуклеотидов АТЦ в молекуле ДНК будет соответствовать кодон молекулы и-РНК:

1) ТАГ 2) УАГ 3) УТЦ 4) ЦАУ

30. Знаки препинания генетического кода:

1.кодируют определённые белки 2. запускают синтез белка

3. прекращают синтез белка

31. Процесс самоудвоения молекулы ДНК.

1.репликация 2.репарация 3.реанкорнация

32. Функция и-РНК в процессе биосинтеза.

1.хранение наследственной информации 2.транспорт АК на рибосомы

3.подача информации на рибосомы

33. Процесс, когда т-РНК приносят аминокислоты на рибосомы.

1.транскрипция 2.трансляция 3.трансформация

34. Рибосомы, синтезирующие одну и ту же белковую молекулу.

1.хромосома 2.полисома 3.мегахромосома

35. Процесс, при котором аминокислоты образуют белковую молекулу.

1.транскрипция 2.трансляция 3.трансформация

36. К реакциям матричного синтеза относят…

1.репликацию ДНК 2.транскрипцию, трансляцию 3.оба ответа правильные

37.Один триплет ДНК несет информацию о:

1.Последовательности аминокислот в молекуле белка
2.Месте определенной АК в белковой цепи
3.Признаке конкретного организма
4.Аминокислоте, включаемой в белковую цепь

38. В гене закодирована информация о:

1) строении белков, жиров и углеводов 2) первичной структуре белка

3) последовательности нуклеотидов в ДНК

4) последовательности аминокислот в 2-х и более молекулах белков

39. Синтез иРНК начинается с:

1) разъединения ДНК на две нити 2) взаимодействия фермента РНК - полимеразы и гена

3) удвоения гена 4) распада гена на нуклеотиды

40. Транскрипция происходит:

1) в ядре 2) на рибосомах 3) в цитоплазме 4) на каналах гладкой ЭПС

41. Синтез белка не идет на рибосомах у:

1) возбудителя туберкулеза 2) пчелы 3) мухомора 4) бактериофага

42. При трансляции матрицей для сборки полипептидной цепи белка служат:

1) обе цепочки ДНК 2) одна из цепей молекулы ДНК

3) молекула иРНК 4) в одних случаях одна из цепей ДНК, в других– молекула иРНК

Доказано существование 4 уровней структурной организации белковой молекулы.

Первичная структура белка – последовательность расположения аминокислотных остатков в полипептидной цепи. В белках отдельные аминокислоты связаны друг с другом пептидными связями , возникающими при взаимодействии a-карбоксильных и a-аминогрупп аминокислот.

К настоящему времени расшифрована первичная структура десятков тысяч разных белков. Для определения первичной структуры белка методами гидролиза выясняют аминокислотный состав. Затем определяют химическую природу концевых аминокислот. Следующий этап - определение последовательности аминокислот в полипептидной цепи. Для этого используют избирательный частичный (химический и ферментативный) гидролиз. Возможно применение рентгеноструктурного анализа, а также данных о комплементарной нуклеотидной последовательности ДНК.

Вторичная структура белка – конфигурация полипептидной цепи, т.е. способ упаковки полипептидной цепи в определенную конформацию. Процесс этот протекает не хаотично, а в соответствии с программой, заложенной в первичной структуре.

Стабильность вторичной структуры обеспечивается в основном водородными связями, однако определенный вклад вносят ковалентные связи – пептидные и дисульфидные.

Наиболее вероятным типом строения глобулярных белков считают a-спираль . Закручивание полипептидной цепи происходит по часовой стрелке. Для каждого белка характерна определенная степень спирализации. Если цепи гемоглобина спирализованы на 75%, то пепсина-всего на 30%.

Тип конфигурации полипептидных цепей, обнаруженных в белках волос, шелка, мышц, получил название b-структуры . Сегменты пептидной цепи располагаются в один слой, образуя фигуру, подобную листу, сложенному в гармошку. Слой может быть образован двумя или большим количеством пептидных цепей.

В природе существуют белки, строение которых не соответствует ни β-, ни a-структуре, например, коллаген - фибриллярный белок, составляющий основную массу соединительной ткани в организме человека и животных.

Третичная структура белка – пространственная ориентация полипептидной спирали или способ укладки полипептидной цепи в определенном объеме. Первый белок, третичная структура которого была выяснена рентгеноструктурным анализом - миоглобин кашалота (рис. 2).

В стабилизации пространственной структуры белков, помимо ковалентных связей, основную роль играют нековалентные связи (водородные, электростатические взаимодействия заряженных групп, межмолекулярные ван-дер-ваальсовы силы, гидрофобные взаимодействия и т.д.).

По современным представлениям, третичная структура белка после завершения его синтеза формируется самопроизвольно. Основной движущей силой является взаимодействие радикалов аминокислот с молекулами воды. При этом неполярные гидрофобные радикалы аминокислот погружаются внутрь белковой молекулы, а полярные радикалы ориентируются в сторону воды. Процесс формирование нативной пространственной структуры полипептидной цепи называют фолдингом . Из клеток выделены белки, названные шаперонами. Они участвуют в фолдинге. Описан ряд наследственных заболеваний человека, развитие которых связывают с нарушением вследствие мутаций процесса фолдинга (пигментозы, фиброзы и др.).

Методами рентгеноструктурного анализа доказано существование уровней структурной организации белковой молекулы, промежуточных между вторичной и третичной структурами. Домен - это компактная глобулярная структурная единица внутри полипептидной цепи (рис. 3). Открыто много белков (например, иммуноглобулины), состоящих из разных по структуре и функциям доменов, кодируемых разными генами.

Все биологические свойства белков связаны с сохранностью их третичной структуры, которую называют нативной . Белковая глобула не является абсолютно жесткой структурой: возможны обратимые перемещения частей пептидной цепи. Эти изменения не нарушают общей конформации молекулы. На конформацию молекулы белка оказывают влияние рН среды, ионная сила раствора, взаимодействие с другими веществами. Любые воздействия, приводящие к нарушению нативной конформации молекулы, сопровождаются частичной или полной потерей белком его биологических свойств.

Четвертичная структура белка - способ укладки в пространстве отдельных полипептидных цепей, обладающих одинаковой или разной первичной, вторичной или третичной структурой, и формирование единого в структурном и функциональном отношениях макромолекулярного образования.

Белковую молекулу, состоящую из нескольких полипептидных цепей, называют олигомером , а каждую входящую в него цепь - протомером . Олигомерные белки чаще построены из четного числа протомеров, например, молекула гемоглобина состоит из двух a- и двух b-полипептидных цепей (рис. 4).

Четвертичной структурой обладает около 5% белков, в том числе гемоглобин, иммуноглобулины. Субъединичное строение свойственно многим ферментам.

Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. Биологическую активность белок приобретает только при объединении входящих в его состав протомеров. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной.

Некоторые исследователи признают существование пятого уровня структурной организации белков. Это метаболоны - полифункциональные макромолекулярные комплексы разных ферментов, катализирующих весь путь превращений субстрата (синтетазы высших жирных кислот, пируватдегидрогеназный комплекс, дыхательная цепь).