Бактерии, их разнообразие. Строение. Жизнедеятельность. Микробиология Строение и классификация бактерий

Люди стараются найти новые способы обезопасить себя от их пагубного влияния. Но существуют и полезные микроорганизмы: способствующие созреванию сливок, образованию нитратов для растений, разлагающие мертвую ткань и др. Живут микроорганизмы в воде, почве, воздухе, на теле живых организмов и внутри них.

Формы бактерий

Существует основные 4 формы бактерии, а именно:

  1. Микрококки – располагающиеся отдельно или неправильными скоплениями. Обычно они неподвижны.
  2. Диплококки располагаются попарно, в организме могут быть окружены капсулой.
  3. Стрептококки встречаются в виде цепочек.
  4. Сарцины образуют скопления клеток, имеющих форму пакетов.
  5. Стафилококки. В результате процесса деления не расходятся, а образуют скопления (грозди).
Палочковидные типы (бациллы) различают по размеру, взаимному расположению и форме:

Бактерия имеет сложное строение:

  • Стенка клетки защищает одноклеточный организм от внешнего воздействия, придает определенную форму, обеспечивает питание и сохранение его внутреннего содержимого.
  • Цитоплазматическая мембрана содержит ферменты, участвует в процессе размножения, биосинтезе компонентов.
  • Цитоплазма служит для выполнения жизненно важных функций. У многих видов в цитоплазме содержится ДНК, рибосомы, различные гранулы, коллоидная фаза.
  • Нуклеоид - это ядерная область неправильной формы, в которой располагается ДНК.
  • Капсула является поверхностной структурой, которая делает оболочку более прочной, защищает от повреждений и пересыхания. Эта слизистая структура имеет толщину больше 0,2 мкм. При меньшей толщине ее называют микрокапсулой. Иногда вокруг оболочки находится слизь , не имеющая четких границ и растворимая в воде.
  • Жгутиками называют поверхностные структуры, служащие для передвижения клеток в жидкой среде или по твердой поверхности.
  • Пили – нитевидные образования, намного тоньше и меньше жгутиков. Они бывают различных типов, различаются по назначению, строению. Пили нужны для прикрепления организма к поражаемой клетке.
  • Споры . Спорообразование происходит при возникновении неблагоприятных условий, служат для приспособления вида или его сохранения.
Виды бактерий

Предлагаем рассмотреть основные виды бактерий:

Жизнедеятельность

Питательные вещества поступают внутрь клетки через всю ее поверхность. Микроорганизмы получили широкое распространение благодаря существованию у них различных типов питания. Для жизни им необходимы разнообразные элементы: углерод, фосфор, азот и др. Регулировка поступления питательных веществ осуществляется с помощью мембраны.

Тип питания определяется по тому, как происходит усвоение углерода и азота и по виду источника энергии. Одни из них могут получать эти элементы из воздуха, использовать солнечную энергию, а другим для существования необходимы вещества органического происхождения. Все они нуждаются в витаминах, аминокислотах, способных играть роль катализаторов реакций, идущих в их организме. Вывод веществ из клетки происходит за счет процесса диффузии.

У многих типов микроорганизмов важную роль в обмене веществ и дыхании играет кислород. В результате дыхания происходит выделение энергии, используемой ими для образования органических соединений. Но существуют бактерии, кислород для которых смертелен.

Размножение происходит путем деления клетки на две части. После того, как она достигает определенных размеров, начинается процесс разделения. Клетка удлиняется и в ней образовывается поперечная перегородка. Образовавшиеся части расходятся, но некоторые виды остаются связанными и образуют скопления. Каждая из вновь образовавшихся частей питается и растет, как самостоятельный организм. При попадании в благоприятную среду процесс размножения происходит с большой скоростью.

Микроорганизмы способны разлагать сложные вещества на простые, которые потом могут вновь использоваться растениями. Поэтому бактерии незаменимы в круговороте веществ, без них невозможны были бы многие важные процессы на Земле.

А знаете ли вы?

Вывод: Не забывайте мыть руки всякий раз, когда приходите домой после улице. Сходив в туалет, также мойте руки с мылом. Простое правило, а какое важное! Следите за чистотой, и бактерии вас не будут тревожить!

Для закрепления материала предлагаем пройти наши увлекательные задания. Желаем удачи!

Задание №1

Внимательно посмотрите на картинку и скажите, какая из этих клеток является бактериальной? Попробуйте назвать оставшиеся клетки, не подглядывая в подсказки:

Бактерии относятся к прокариотам – одноклеточным организмам, не имеющим ядра. Их подразделяют на два надцарства: Bacteria и Archaebacteria. Среди последних нет возбудителей инфекционных болезней. На сегодняшний день классификация бактерий базируется на принципах генетической связи.

Надцарство Bacteria образуют следующие организмы:

  • тонкостенные (грамотрицательные);
  • толстостенные (грамположительные);
  • без стенок клетки (микоплазмы).

Внутри надцарства микроорганизмы классифицируются на шесть таксономических групп:

  • Класс.
  • Порядок.
  • Семейство.

Главная группа – это вид. Он представлен как совокупность особей с одинаковым генезисом и генотипом, связанных схожими признаками и отличных от прочих видов.

Наименование вида определяется бинарной номенклатурой (то есть название сформировано из двух слов). Возбудитель сифилиса, например, обозначается как Treponema pallidum. Первая часть наименования обозначает род, указывается с заглавной буквы. Вторая указывает на вид, прописывается с маленькой буквы. Если вид упоминается вторично, наименование рода обозначается начальной буквой (T. padillum).

Самой распространенной считается фенотипическая группировка, включенная в девятое издание Определителя Берджи. Ее принципы базируются на структуре стенок клетки.

Определитель Берджи также классифицирует бактерии по окраске по Граму. Методика Грама – это способ исследования, при котором окрашивание позволяет дифференцировать организмы по биохимическим свойствам стенок их клетки. Метод разработал в 1884 году датский врач Грам.

Крупнейшие группы бактерий в классификации Берджи:

  • Грамотрицательные.
  • Грамположительные.
  • Микоплазмы.
  • Археи.

В определителе Берджи описания представлены по группам, включающим семейства, роды и виды. Иногда в группу включаются классы и порядки. Определитель Берджи выделяет 30 групп, включающих патогенные организмы, остальные 5 групп по Берджи не содержат патогенных видов.

В последние годы популярность набирает филогенетическая классификация, которая строится на принципах молекулярной биологии. В 60-е годы прошлого столетия был открыт один из первых способов определения родственных связей по схожести генома – методика сопоставления концентрации гуанина (элемента нуклеиновой кислоты) и цитозина (составляющей ДНК) в макромолекуле ДНК. Идентичные показатели их концентрации не свидетельствуют об эволюционной схожести микроорганизмов, но разница в 10% указывает на то, что бактерии относятся к разным родам.

В 70-е годы разработали еще одну методику, в корне изменившую теорию микробиологии – оценка последовательности генов в 16s рРНК. Посредством данного метода стало возможным выделение нескольких филогенетических группировок микроорганизмов и анализ их взаимосвязи.

Классификация на уровне вида осуществляется с помощью методики ДНК-ДНК гибридизации. Изучение досконально исследованных видов показывает, что 70% степени гибридизации описывают один вид, от 10% до 60% – один род, меньше 10% – различные роды.

Филогенетическая классификация частично копирует фенотипическую. Так, например, грамотрицательные входят и в ту, и в другую. Вместе с тем система грамотрицательных организмов практически полностью видоизменена. Архебактерии определены как независимый таксон высшего звена, некоторые таксономические группировки перераспределены, к одной категории отнесены микроорганизмы с различным экологическим предназначением.

Формы бактерий

Бактерии можно классифицировать, ориентируясь на их морфологию. Один из главных морфологических признаков – форма.

Выделяют несколько разновидностей:

  • Шарообразная (кокки, диплококки, сарцины, стрептококки, стафилококки).
  • Палочкообразная (бациллы, диплобациллы, стрептобациллы, коккобактерии).
  • Витиеватая (вибрионы, спириллы).
  • Спиралеобразная (спирохеты – тонкие, удлиненные, извилистые микроорганизмы с множеством завитков).
  • Нитчатая.

На рисунке изображены их формы:

  • 1 – микрококки;
  • 2 – стрептококки;
  • 3 – сарцины;
  • 4 – бесспоровые палочки;
  • 5 – споровые палочки (бациллы);
  • 6 – вибрионы;
  • 7 – спирохеты;
  • 8 – жгутиковые спириллы;
  • 9 – стафилококки.

Шарообразные бактерии имеют сферическую форму, также бывают овальные и бобовидные организмы.

Расположение кокков:

  • По отдельности – микрококки.
  • В паре – диплококки.
  • В цепях – стрептококки.
  • В форме виноградной лозы – стафилококки.
  • В «пакетах» – сарцины.

Чаще всего встречаются палочкообразные бактерии. Палочки собираются поодиночке, в парах (диплобактерии) или в цепях (стрептобактерии). Ряд палочкообразных организмов может при тяжелых условиях формировать споры. Бациллы являются споровыми палочками. Бациллы, похожие на веретено, называются клостридиями.

Витиеватые микроорганизмы имеют форму запятой (вибрионы), тонкой извилистой палочки (спирохеты), также могут иметь несколько завитков (спириллы).

У архебактерий нет пептидогликана (компонента, выполняющего механическую функцию) в стенках клетки. Они обладают специфическими рибосомами и рибосомными РНК (рибонуклеиновая кислота).

Морфология тонкостенных грамотрицательных организмов:

  • Шаровидная форма (гонококки, менингококки, вейлонеллы).
  • Витиеватая (спирохеты, спириллы).
  • Палочкообразная (риккетсии).

Среди толстостенных грамположительных микроорганизмов выделяют:

  • Шарообразные (стафилококки, пневмококки, стрептококки).
  • Палочкообразные.
  • Разветвленные, нитевидные организмы (актиномицеты).
  • Булавовидные организмы (коринебактерии).
  • Микобактерии.
  • Бифидобактерии.

Расположение и количество жгутиков

Морфология включает такой параметр, как месторасположение и количество жгутиков. По данному параметру различают:

  • Монотрихи (единственный жгутик на полюсе их клетки).
  • Лофотрихи (связка жгутиков на полюсе их клетки).
  • Амфитрихи (два пучка жгутиков на их полюсах).
  • Перитрихи (большое количество жгутиков по всей бактерии).

Наличие жгутиков свойственно кишечным микробам, холерному вибриону, спирилле, щелочеобразователям.

Расцветка стенок клетки

Окраска бактерий определяется концентрацией пептидогликана. Организмы, для которых характерно высокое содержание пептидогликана в стенках клетки (около 90%), имеют сине-фиолетовую окраску по Граму. Это грамположительные бактерии.

Все остальные бактерии, имеющие в оболочке от 5 до 20% пептидогликана, приобретают розоватую окраску. К ним причисляются грамотрицательные бактерии. Степень толщины пептидогликана у грамположительных организмов в несколько раз выше, чем у грамотрицательных.

Стенки клеток грамположительных организмов также включают полисахариды, тейхоевые кислоты и белки. Грамотрицательные бактерии покрывает внешняя мембрана, состоящая из липополисахаридов и базальных белков.

Расцветка по Граму позволяет классифицировать прокариоты на подкатегории. Толстостенные микроорганизмы из отдела Gracilicutes, протопласты и сферопласты с дефектной стенкой клетки окрашиваются грамотрицательно. Толстостенные бактерии типа Фирмикуты окрашиваются грамположительно.

Классификация по виду дыхания

По виду дыхания различают:

  • аэробные;
  • анаэробные организмы.

Клетки бактерий способны к дыханию, т. е. в них происходит окисление органических соединений кислородом, в результате чего образуется углекислый газ, вода и энергия. Эти организмы считаются аэробными, поскольку им нужен кислород. Они обитают на поверхности воды и земли, в воздушном пространстве.

Многие микроорганизмы существуют без кислорода, т. е. обходятся без дыхания. К ним относятся бактерии, участвующие в процессе разложения веществ при перегное. Такие организмы являются анаэробными. Дыхание заменяет брожение – разложение органических соединений без кислорода с выработкой энергии. В процессе брожения спирта образуется энергия в 114 кДж (или 27 килокалорий), в результате молочнокислого энергия составляет 94 кДж (или 18 килокалорий). Дыхание бактерий осуществляется в их лизосомах.

Способ питания

Классификация бактерий по типам питания:

  • автотрофы;
  • гетеротрофы.

Первые обитают в воздухе и используют неорганические вещества для продуцирования органических. Автотрофы используют солнечную энергию (цианобактерии) либо энергию неорганических соединений (серобактерии, железобактерии).

Классификация по ферментам

Ферменты играют важную роль в обменных процессах клетки. Они подразделяются на шесть групп:

  • Оксиредуктазы.
  • Трансферазы.
  • Гидролазы.
  • Лигазы.
  • Лиазы.
  • Изомеразы.

Вырабатываемые ферменты располагаются внутри клетки (эндоферменты) либо выводятся наружу (экзоферменты). Второй тип ферментов участвует в поступлении в клетку углерода и энергии. Большая часть ферментов из группы гидролаз причисляются к экзоферментам. Ряд ферментов (коллагеназа и т. д.) относится к ферментам агрессии. Отдельные ферменты расположены в стенках клетки. Они выполняют транспортную функцию, т. е. переносят в клетку вещества.

Бактерии – это безъядерные одноклеточные микроорганизмы, которые классифицируются по множеству параметров (способы дыхания и питания, строение стенки клетки, форма и т. д.). На сегодняшний день науке известно более 10000 видов бактерий, но предположительно их количество достигает миллиона.

Питание бактерий.

Питание.

Пассивная диффузия

Облегчённая диффузия

Активный транспорт

В первом случае молекула питательного вещества образует комплекс с белком периплазматического пространства, который взаимодействует со специфической пермеазой цитоплазматической мембраны. После энергозависимого проникновения через цитоплазматическую мембрану комплекс «субстрат – белок периплазмы – пермеаза» диссоциирует с освобождением молекулы субстрата.

При активном транспорте с химической модификацией переносимого вещества цепь событий включает: (1) фосфорилирование мембранного фермента-2 со стороны цитоплазмы фосфоенолпируватом; (2) связывание на поверхности цитоплазматической мембраны фосфорилированным ферментом-2 молекулы субстрата; (3) энергозависимый транспорт молекулы субстрата в цитоплазму; (4) перенос фосфатной группы на молекулу субстрата; (5) диссоциация комплекса «субстрат – фермент» в цитоплазме. За счёт фосфорилирования молекулы субстрата аккумулируются в цитоплазме клеток и не способны выйти из них.

Классификация бактерий по типу питания.

По способу поступления питательных веществ бактерии подразделяются на голофиты и голозои . Бактерии-голофиты (от греч. holos – полноценный и phyticos – относящийся к растениям) неспособны выделять в окружающую среду ферменты, расщепляющие субстраты, вследствие чего потребляют питательные вещества исключительно в растворённом, молекулярном виде. Бактерии-голозои (от греч. holos – полноценный и zoikos – относящийся к животным), напротив, имеют комплекс экзоферментов, которые обеспечивают внешнее питание – расщепление субстратов до молекул вне бактериальной клетки. После этого молекулы питательных веществ поступают внутрь бактерий-голозоев.

По источнику углерода среди бактерий выделяют автотрофы и гетеротрофы . Автотрофы (от греч. autos – сам, trophe – пища) в качестве источника углерода используют углекислый газ (СО 2), из которого синтезируют все углеродсодержащие вещества. Для гетеротрофов (от греч. geteros – другой и trophe – пища) источником углерода являются различные органические вещества в молекулярной форме (углеводы, многоатомные спирты, аминокислоты, жирные кислоты). Наибольшая степень гетеротрофности присуща прокариотам, которые могут жить только внутри других живых клеток (например, риккетсии и хламидии).

По источнику азота прокариоты подразделяются на 3 группы: 1) азотфиксирующие бактерии (усваивают молекулярный азот из атмосферного воздуха); 2) бактерии, потребляющие неорганический азот из солей аммония, нитритов или нитратов; 3) бактерии, которые ассимилируют азот, содержащийся в органических соединениях (аминокислоты, пурины, пиримидины и др.).

По источнику энергии бактерии делят на фототрофы и хемотрофы . Бактерии-фототрофы , как и растения, способны использовать солнечную энергию. Фототрофные прокариоты заболеваний у человека не вызывают. Бактерии-хемотрофы получают энергию при окислительно-восстановительных реакциях.

По природе доноров электронов литотрофы (от греч. litos – камень) и органотрофы . У литотрофов (хемолитотрофов ) в качестве доноров электронов выступают неорганические вещества (Н 2 , Н 2 S, NH 3 , сера, CO, Fe 2+ и др.). Донорами электронов у органотрофов (хемоорганотрофов ) являются органические соединения – углеводы, аминокислоты и др.

Большинство патогенных для человека бактерий обладает хемоорганотрофным (хемогетеротрофным) типом питания; реже встречается хемолитотрофный (хемоавтотрофный) тип.

По способности синтезировать органические соединения бактерии-хемотрофы подразделяются на прототрофы, ауксотрофы и гипотрофы . Бактерии-прототрофы синтезируют из глюкозы и солей аммония все необходимые органические вещества. Бактерии называются ауксотрофами , если они неспособны синтезировать какое-либо органическое вещество из указанных соединений. Крайняя степень утраты метаболической активности называется гипотрофией. Гипотрофные бактерии обеспечивают свою жизнедеятельность, реорганизуя структуры или метаболиты хозяина.

Кроме углерода и азота, для полноценной жизнедеятельности бактериям необходимы сера, фосфор, ионы металлов. Источниками серы являются аминокислоты (цистеин, метионин), витамины, кофакторы (биотин, липоевая кислота и др.), сульфаты. Источниками фосфора служат нуклеиновые кислоты, фосфолипиды, фосфаты. В достаточно высоких концентрациях бактериям нужны магний, калий, кальций, железо; в значительно меньших – цинк, марганец, натрий, молибден, медь, никель, кобальт.

Факторы роста – это вещества, которые бактерии самостоятельно синтезировать не могут, но крайне в них нуждаются. В качестве факторов роста могут выступать аминокислоты, азотистые основания, витамины, жирные кислоты, железопорфирины и другие соединения. Для создания оптимальных условий жизнедеятельности бактерий факторы роста должны быть добавлены в питательные среды.

Метаболизм, превращение энергии

А) Конструктивный метаболизм.

Обязательной фазой питания бактерий является усвоение питательных веществ, то есть включение их в изменённом или модифицированном виде в синтетические реакции по воспроизведению клеточных компонентов и структур.

Белковый обмен у бактерий может протекать в 3 фазы: первичный распад белка, вторичный распад и синтез белка. Первичный распад белковых молекул до пептонов осуществляют экзоферменты – экзопротеазы, выделяемые бактериями в окружающую среду. Вторичный распад происходит под действием эндоферментов (эндопротеаз), которые имеют все бактерии. Этот процесс протекает внутри бактериальной клетки и заключается в расщеплении пептидов до составляющих их аминокислот. Последние могут быть использованы в неизменённом виде или быть подвергнуты химическим преобразованиям (дезаминирование, декарбоксилирование и др.), в результате которых появляются аммиак, индол, сероводород, кетокислоты, спирт, углекислый газ и др. Обнаружение указанных соединений имеет в бактериологии диагностическое значение.

Наряду с реакциями расщепления белков, происходят реакции их синтеза. Одни бактерии образуют белки из готовых аминокислот, полученных в результате внешнего питания, другие бактерии самостоятельно синтезируют аминокислоты из простых соединений, содержащих азот и углерод. Синтез аминокислот может осуществляться в реакциях аминирования, переаминирования, амидирования, карбоксилирования. Большинство прокариот способны синтезировать все аминокислоты, входящие в состав клеточных белков. Особенностью биосинтеза аминокислот является использование общих биосинтетических путей: цикл трикарбоновых кислот, гликолиз, окислительный пентозо-фосфатный путь и др. Основным исходным соединением для синтеза аминокислот является пируват и фумарат.

Углеводный обмен у автотрофов и гетеротрофов имеет отличия (схема 1). Бактерии-автотрофы все необходимые углеводы синтезируют из углекислого газа. Сырьём для образования углеводов у бактерий-гетеротрофов могут служить: (1) одно-, двух- и трёхуглеродные соединения; и (2) полисахариды (крахмал, гликоген, целлюлоза). Для расщепления последних многие бактерии-гетеротрофы имеют экзоферменты (амилаза, пектиназа и др.), которые проводят гидролиз полисахаридов до образования глюкозы, мальтозы, фруктозы и пр.


У бактерий-автотрофов в цикле Кальвина из углекислого газа образуется рибулозофосфат-фосфорно-глицериновая кислота, которая включается в реакции гликолиза, идущие в обратном направлении. Конечным продуктом обратного синтеза является глюкоза.

Бактерии-гетеротрофы образуют глюкозу из одно-, двух- и трёхуглеродных соединений, также включая их в реакции обратного гликолиза. Ввиду того, что некоторые реакции гликолиза необратимы, у гетеротрофов сформировались специальные ферментативные реакции, позволяющие обходить необратимые реакции катаболического пути.

При расщеплении бактериями-гетеротрофами полисахаридов образующиеся дисахариды поступают внутрь клеток и под влиянием мальтозы, сахарозы, лактозы подвергаются гидролизу и распаду на моносахара, которые затем сбраживаются либо включаются в реакции взаимопревращения сахаров.

Липидный обмен . Исходными материалами для образования липидов у бактерий могут служить как экзогенные липиды, так и амфиболиты межуточного обмена. Экзогенные липиды подвергаются действию бактериальных липаз и других липолитических ферментов. Многие виды бактерий усваивают глицерин, который служит источником пластического материала и энергии. Эндогенными источниками для синтеза липидов могут быть ацетилкоэнзим А, пропионил-АПБ, малонил-АПБ (АПБ – ацетилпереносящий белок), фосфодиоксиацетон и др.

Исходным субстратом для синтеза жирных кислот с чётным числом углеродных атомов служит ацетилкоэнзим А, для жирных кислот с нечётным числом углеродных атомов – пропионил-АПБ и малонил-АПБ. Образование двойных связей в молекуле кислоты у аэробных прокариот происходит при участии молекулярного кислорода и фермента десатуразы. У анаэробных прокариот двойные связи вводятся на ранних этапах синтеза в результате реакции дегидратации. Исходным субстратом для синтеза фосфолипидов служит фосфодиоксиацетон (промежуточное соединение гликолитического пути), восстановление которого приводит к образованию 3-фосфороглицерина. К последнему затем присоединяются 2 остатка жирных кислот в виде комплекса с АПБ. Продуктом реакции является фосфатидная кислота, активирование которой с помощью ЦТФ и последующее присоединение к фосфатной группе серина, инозита, глицерина или другого соединения приводят к синтезу соответствующих фосфолипидов.

Ауксотрофные и гипотрофные по жирным кислотам микроорганизмы (например, микоплазмы) получают их в готовом виде из клеток хозяина или питательной среды.

Мононуклеотидный обмен . Пуриновые и пиримидиновые мононуклеотиды являются важнейшими компонентами ДНК и РНК. Многие прокариоты способны как использовать содержащиеся в питательной среде готовые пуриновые и пиримидиновые основания, их нуклеозиды и нуклеотиды, так и синтезировать их из низкомолекулярных веществ. Бактерии располагают ферментами, катализирующими следующие этапы взаимопревращений экзогенных пуриновых и пиримидиновых производных: азотистое основание – нуклеозид – нуклеотид (моно- – ди- – трифосфат).

Синтез пуриновых и пиримидиновых мононуклеотидов de novo осуществляется независимыми путями. При синтезе пуриновых нуклеотидов в результате последовательных ферментативных реакций образуется инозиновая кислота, из которой путём химических модификаций пуринового кольца синтезируются адениловая (АМФ) и гуаниловая (ГМФ) кислоты. Синтез пиримидиновых нуклеотидов начинается с образования оротидиловой кислоты, декарбоксилирование которой даёт уридиловую кислоту (УМФ). Из последней образуется УТФ, ацилирование которого приводит к возникновению ЦТФ.

Дезоксирибонуклеотиды образуются в результате восстановления соответствующих рибонуклеотидов на уровне дифосфатов или трифосфатов. Синтез специфического для ДНК нуклеотида – тимидиловой кислоты происходит путём ферментативного метилирования дезоксиуридиловой кислоты.

Ионный обмен . Минеральные соединения – ионы, NH 3 + , К + , Mg 2+ , Fe 2+ , SO 4 2- , PO 4 3- и другие бактерии получают из окружающей среды как в свободном, так и в связанном с другими органическими веществами состоянии. Катионы и анионы транспортируются в бактериальную клетку различными способами, описанными в § 3. На скорость проникновения ионов в бактериальную клетку влияют рН среды и физиологическая активность самих микроорганизмов.

Б) Дыхание бактерий (энергетический метаболизм).

Все процессы жизнедеятельности энергозависимы, поэтому добывание энергии является крайне важной стороной метаболизма прокариот. Они получают энергию при анаэробном и аэробном дыхании.

Дыхание , или биологическое окисление – это катаболический процесс переноса электронов от вещества-донора на вещество-акцептор, сопровождающийся накоплением энергии в макроэргических соединениях . Дыхание осуществляется в процессе катаболических реакций, в результате которых сложные органические вещества, расщепляясь, отдают энергию и превращаются в простые соединения. Аккумулированная в макроэргических веществах (АТФ, ГТФ, УТФ и др.) энергия используется в анаболических реакциях.

По способу дыхания микроорганизмы подразделяются на облигатные (строгие) аэробы, облигатные анаэробы и факультативные анаэробы .

Облигатные аэробы нуждаются в свободном кислороде. Донорами электронов у патогенных для человека аэробов-хемоорганотрофов являются органические соединения (углеводы, жиры, белки), акцептором электронов – молекулярный кислород. Запасание энергии в виде АТФ у аэробов-хемоорганотрофов происходит при окислительном фосфорилировании доноров электронов. Аэробы обладают цитохромами (участвуют в переносе электронов), а также ферментами (каталаза, супероксиддисмутаза, пероксидаза), инактивирующими токсические кислородные радикалы, образующиеся при дыхании. Супероксиддисмутаза инактивирует наиболее токсичный метаболит – супероксидрадикал в Н 2 О 2 . Фермент каталаза превращает Н 2 О 2 в Н 2 О и О 2 .

Особую группу аэробов составляют микроаэрофильные бактерии , которые хотя и нуждаются в кислороде для получения энергии, лучше растут при повышенном содержании СО 2 , например, бактерии родов Campylobacter и Helicobacter .

Облигатные анаэробы не нуждаются в свободном кислороде, напротив, даже в малых количествах кислород оказывает на них токсическое действие. Донорами электронов у патогенных для человека анаэробов-хемоорганотрофов служат различные органические соединения (преимущественно углеводы). Акцептором электронов у анаэробов-хемоорганотрофов являются органические кислородсодержащие соединения – кислоты или кетоны, то есть акцептор электрона - связанный с органическим фрагментом кислород. Запасание энергии у этих прокариот происходит при субстратном фосфорилировании. Облигатные анаэробы, как правило, не имеют цитохромов и ферментов, инактивирующих кислородные радикалы (каталазо- и супероксидисмутазоотрицательны).

У непатогенных для человека анаэробов хемолитотрофов акцептором электронов являются неорганические кислородсодержащие соединения – нитраты, сульфаты, карбонаты.

Особую группу анаэробов составляют аэротолерантные бактерии, которые способны расти в присутствии атмосферного кислорода, но не используют его в качестве акцептора электронов (например, молочнокислые бактерии). Аэротолерантные прокариоты каталазо- и супероксиддисмутазопозитивны.

Факультативные анаэробы способны существовать как в кислородной, так и в бескислородной средах. Донорами электронов у них являются органические вещества; акцепторами электронов, в зависимости от условий среды – молекулярный или связанный в органических и неорганических соединениях кислород. Энергия факультативными анаэробами может аккумулироваться как при окислительном, так и при субстратном фосфорилировании. Как и аэробы, данная группа бактерий имеет цитохромы и ферменты антиоксидантной защиты.

Основным субстратом для получения энергии являются углеводы, которые у разных по типу дыхания хемогетеротрофных прокариот могут катаболизироваться до ацетилкоэнзима А («активированная уксусная кислота»). В качестве энергетических субстратов могут выступать липиды и белки, поскольку ацетилкоэнзим А также является одним из промежуточных продуктов их метаболизма (схема 2).

Катаболизм углеводов у хемоорганотрофных прокариот включает: (а) анаэробные процессы – гликолиз, пентозофосфатный путь и кетодезоксифосфоглюконатный путь; (б) аэробный процесс – цикл трикарбоновых кислот (цикл Кребса). Анаэробные процессы имеют место у всех прокариот, тогда как аэробный процесс характерен только для облигатных аэробов и факультативных анаэробов. В основе получения энергии анаэробными путями лежит субстратное фосфорилирование, в основе аэробного процесса – окислительное фосфорилирование.

Определение понятий.

Стерилизация, дезинфекция и антисептика являются неотъемлемыми частями современной медицинской и в особенности хирургической практики. Понимание принципов и практического применения этих методов необходимо, поскольку многие потенциально патогенные микроорганизмы способны оставаться жизнеспособными вне макроорганизма в течение длительного времени, проявлять высокую устойчивость к действию физических и химических дезинфектантов и относительно легко передаваться от одного человека к другому.

Антисептика - уничтожение или предотвращение роста патогенных или условно-патогенных микроорганизмов химическими методами. Этот термин обычно используют для обозначения наружного нанесения химического препарата на живые ткани.

Антисептик - вещество, которое угнетает рост или разрушает микроорганизм (без действия на споры бактерий). Термин является специфическим для обозначения веществ, которые используются для местного действия на живые ткани.

Асептика означает отсутствие сепсиса, но вообще этот термин используют для того, чтобы подчеркнуть отсутствие любых живых организмов. Асептические методы означают любую процедуру, предназначенную для элиминации живых организмов и предотвращения повторной контаминации ними. Современные хирургические и микробиологические методы основаны на асептических процедурах.

Биоцид - вещество, которое убивает все живые микроорганизмы, как патогенные, так и непатогенные, включая споры.

Биостат - агент, который предотвращает рост микроорганизмов, но необязательно убивает их.

Деконтаминация - удаление микроорганизмов без количественного определения. Этот термин является относительным; окончательное удаление микробов может быть осуществлено стерилизацией или дезинфекцией.

Дезинфекция - процесс, который уменьшает количество или полностью уничтожает все патогенные микроорганизмы, кроме спор.

Гермицид - вещество, которое разрушает микроорганизмы, особенно патогенные. Гермицид не разрушает споры.

Санация - метод, благодаря которому микробная контаминация уменьшается до “безопасного” уровня. Этот метод ранее использовали для “очищения” неживых объектов.

Стерилизация - использование физических факторов и (или) химических веществ для полного уничтожения или разрушения всех форм микробной жизни.

Стерилизация.

Стерилизацию определяют как разрушение или удаление (путем фильтрации) всех микроорганизмов и их спор. Стерилизацию обычно проводят с помощью тепла. Стерилизация, будучи одной из повседневных процедур в работе микробиологической лаборатории, является необходимым методом, обеспечивающим такую обработку, при которой культуры, оборудование, посуда и среды способствуют росту только необходимых микроорганизмов, тогда как другие микробы разрушаются. Различают такие виды стерилизации: прокаливание в пламени горелки, кипячение, действие текучим паром, паром под давлением в автоклаве, сухим жаром, пастеризация, тиндализация, химическая, холодная (механическая) стерилизация.

Выбор методов стерилизации.

При выборе методов стерилизации нужно учитывать следующие требования:

1. Активность: бактерицидная, спороцидная, туберкулоцидная, фунгицидная и вирусоцидная.

2. Скорость процедуры: стерилизация должна проводиться как можно более быстро.

3. Проницаемость: вещества-стерилизаторы должны проникать через упаковку и к внутренним частям инструментария.

4. Совместимость: не должны возникать изменения структуры или функции материалов, которые стерилизуют несколько раз.

5. Нетоксичность: не должно возникать угрозы для здоровья человека и состояния окружающей среды.

6. Устойчивость органического материала: эффективность стерилизации не должна снижаться в присутствия органического материала.

7. Приспособляемость: возможность использовать для больших и малых объёмов стерилизуемого материала.

8. Контроль в течение времени: цикл обработки должен легко и точно контролироваться.

9. Цена: разумная стоимость оснащения, установки и эксплуатации.

Физические стерилизаторы

Влажное тепло, которое образуется в процессе парового автоклавирования, является основным стерилизующим агентом, используемым в лабораториях клинической микробиологии. Автоклавы используют для стерилизации питательных сред, жароустойчивых материалов и обработки инфицированных отходов. Паровой стерилизатор, или автоклав, представляет собой изолированную камеру под давлением, которая использует насыщенный пар для создания высоких температур (рис. 1). Воздух удаляют из камеры замещением по массе или созданием вакуума. Наиболее часто используют автоклавы с замещением по массе. Более лёгкий пар запускают в камеру для вытеснения более тяжёлого воздуха. Кратковременная обработка паром под давлением может уничтожить бактериальные споры. Для рутинной стерилизации питательных сред и других материалов время экспозиции составляет 15 минут при 121ºС и давление - 1,5 кг на 1 квадратный сантиметр. Для инфекционных отходов время экспозиции увеличивается до 30-60 минут. Дополнительно к правильно выбранным времени и температуре, очень важным при стерилизации является прямой контакт с паром. При обработке инфекционного материала следует обеспечить максимальное проникновение пара в отходы. Такой материал необходимо обрабатывать при температуре 132ºС. Не подлежат автоклавированию антинеопластические препараты, токсичные химические вещества и радиоизотопы, которые могут не разрушиться, а также нестабильные химикаты, поскольку они под действием тепла могут испариться и распространиться по камере.

Стерилизация сухим жаром используется для материалов, которые невозможно стерилизовать паром в связи с возможностью повреждения или в связи с непроницаемостью материала для пара. Сухой жар менее эффективен, чем влажное тепло, и требует болеего времени экспозиции и более высоких температур. Стерилизацию сухим жаром обычно проводят в сухожаровом шкафу (рис. 2). Механизм стерилизации с помощью сухого жара является окислительным процессом. Примерами материалов, для которых используют стерилизацию сухим жаром, являются масла, порошки, острые инструменты и стеклянная посуда. Сухой жар или термическую инактивацию-стерилизацию используют как альтернативные методы обработки инфекционных отходов.

Пастеризация разрушает патогенные микроорганизмы путём быстрого нагревания вещества до 71,1ºС на протяжении 15 с, что сопровождается последующим быстрым охлаждением. Пастеризация не является стерилизацией, поскольку не все микроорганизмы чувствительны к ней. Этот метод элиминировал пищевой путь передачи таких заболеваний, как туберкулез пищеварительного тракта и Q-лихорадка.

Тиндализация - это метод стерилизации прерывистым нагреванием, который может использоваться для уничтожения всех бактерий в растворах. Поскольку растущие бактерии легко гибнут при кратковременном кипячении (5 раз в течение 1 часа по 5 минут), всё, что необходимо сделать, это позволить раствору постоять на протяжении определенного времени, прежде чем тепло нарушит созревание спор с существенной потерей их устойчивости к теплу.

Фильтрация - это процесс, который используют для удаления микробов и микроскопических частей из растворов, воздуха и других газов. Наиболее часто стерилизацию путем фильтрации в лаборатории используют для обработки диагностических препаратов, питательных сред, тканевых культуральных сред, сывороток, растворов, которые содержат компоненты сыворотки. Другим общепринятым применением фильтрации является стерилизация воздуха и газов. Пластиковые или бумажные мембранные фильтры, которые различают по диаметру пор (примерно от 12 до 0,22 μм) и используют для механического разделения, служат и для сбора микробов из жидкостей для микроскопического изучения или культивирования прямо на фильтре, когда его помещают на поверхность, пропитанную питательной средой.

Ультрафиолетовое облучение является видом электромагнитной волновой радиации, которая действует на клеточную нуклеиновую кислоту. Микроорганизмы высокочувствительны к действию ультрафиолетовых лучей с длиной волны 254 нм. Ультрафиолет наиболее широко используют для уничтожения микроорганизмов, находящихся в воздухе или на каких-либо поверхностях. Другим применением является холодная стерилизация определенных химикатов и пластика для фармацевтических целей, стерилизация сыворотки для клеточных культур и дезинфекция воды. Существенным недостатком ультрафиолетового облучения в качестве стерилизатора является его неспособность к проникновению внутрь материалов.

Ионизирующее излучение в электромагнитном спектре летально действует на микроорганизмы. Этот спектр включает микроволны, γ-лучи, рентгеновские лучи и поток электронов. Летальный эффект от ионизирующего излучения возникает вследствие прямого действия на молекулу-мишень, в результате чего энергия переносится в молекулу; и вследствие косвенного действия - диффузии радикалов.

Ультразвуковая энергия с низкой частотой инактивирует микроорганизмы в водных растворах. Физический эффект обработки ультразвуком возникает вследствие кавитации. Ультразвуковые очистители и другие приборы часто используют для очистки инструментов, но не считают стерилизаторами. Однако комбинирование ультразвука с химической обработкой убивает микроорганизмы.

Химические стерилизаторы

2 % глютаровый альдегид в качестве жидкого химического стерилизатора ранее широко применяли для обработки медицинского и хирургического материала, который невозможно стерилизовать нагреванием или облучением. Глютаровый альдегид также используют при приготовлении вакцин.

Дезинфекция.

Дезинфекцию можно проводить химическими методами или кипячением. Кипячение является эффективным методом дезинфекции инструментария, например, игл и шприцев, если нет автоклава. Предварительно очищенный медицинский инструментарий следует кипятить 20 минут. Химическую дезинфекцию используют для чувствительного к действию тепла оборудования, которое может повредить высокая температура. Широко используют такие химические дезинфектанты, как компонента хлора, этиловый и изопропиловый спирт, четвертичные компоненты аммония и глютаровый альдегид.

Химические дезинфектанты.

Спирт (этиловый и изопропиловый) , растворённый в воде до концентрации 60-85 %, очень эффективен при дезинфекции. Спирты имеют бактерицидное, фунгицидное и туберкулоцидное действие, но не влияют на споры. Этиловый спирт имеет более широкий спектр вирусоцидной активности, чем изопропиловый, поэтому он более эффективно действует на липофильные и гидрофильные вирусы.

Раствор 37 % формальдеида , который называют формалином, можно использовать в качестве стерилизатора, тогда как его концентрации 3-8 % можно использовать в качестве дезинфектантов.

Фенол в чистом виде не используют в качестве дезинфектанта в связи с его токсичностью, способностью индуцировать развитие опухолей и коррозии. Дериваты фенола, в которых функциональная группа (хлор, бром, алкил, бензил, фенил, амил) замещает один из атомов водорода в ароматическом кольце, широко используют в качестве дезинфектантов. Подобное замещение уменьшает недостатки фенола. Компоненты фенола убивают микробы благодаря инактивации ферментных систем, преципитации белков и нарушению клеточной стенки и мембраны. Обычно используют концентрации 2-5 %, более низкая концентрация требует более длительной экспозиции.

Галогены. Только хлор и йод используют для дезинфекции в лабораторной практике. В связи с тем, что хлор является мощным окислителем, считают, что он убивает микробы путем окисления. Считают, что йод убивает микроорганизмы путём реакции с N-H и S-H группами аминокислот, а также с фенольной группой аминокислоты тирозина и углерод-углеродными двойными связями ненасыщенных жирных кислот. Обычная обработка включает распыление 2-5 % раствора формальдегида в присутствии пара при температуре 60-80ºС.

Антисептика.

Антисептики можно обнаружить в микробиологических лабораториях, прежде всего, в веществах, которые используют для мытья рук. В тех случаях, когда медицинский персонал оказывает неотложную помощь пациентам с использованием веществ, содержащих антибактериальные агенты, это уменьшает количество госпитальных инфекций. Наиболее распространёнными химическими соединениями, содержащимися в веществах для мытья рук, являются спирты, хлоргексидина глюконат, йодофоры, хлороксайленол и триклозан.

Традиционными методами обработки отходов и мусора являются сжигание и стерилизация паром.

Сжигание является методом выбора для обработки отходов и мусора. Этот метод делает отходы неинфекционными, а также изменяет их форму и размеры. Стерилизация является эффективным методом обработки отходов, но она не изменяет их формы. Стерилизация паром в автоклаве при 121ºС в течение минимум 15 минут уничтожает все формы микробной жизни, включая большое количество бактериальных спор. Этот тип полной стерилизации также можно провести с использованием сухого жара при температуре 160-170ºС на протяжении 2-4 часов. Однако следует убедиться, что сухой жар контактирует со стерилизуемым материалом. Поэтому бутылки, которые содержат жидкость, должны быть неплотно закрыты пробками или ватными тампонами для того, чтобы пар и жар могли обмениваться с воздухом в бутылках. Биологически опасные контейнеры, содержащие отходы, следует плотно завязать. Простерилизованный биологически опасный материал нужно запечатать в соответствующие контейнеры с этикетками.

Стерилизация паром (в автоклаве). Инфекционный мусор считают деконтаминированным при уменьшении в 6 lg раз количества вегетативных бактерий, грибов, микобактерий и вирусов, содержащих липиды, и в 4 lg раза - бактериальных эндоспор.

Питание бактерий.

Питание. Под питанием бактериальной клетки следует понимать процесс поглощения и усвоения пластического материала и энергии в результате преобразовательных реакций . Типы питания прокариот сложны и разнообразны. Они различаются в зависимости от способа поступления питательных веществ внутрь бактериальной клетки, источников углерода и азота, способа получения энергии, природы доноров электронов.

Транспорт питательных веществ внутрь клетки может осуществляться 3 механизмами: пассивной диффузией, облегчённой диффузией и активным транспортом.

Пассивная диффузия является неспецифическим энергозависимым процессом, осуществляемым по градиенту концентрации веществ (вещество из среды с большей своей концентрацией пассивно, согласно законам осмоса, поступает в среду с меньшей концентрацией). Пассивной диффузией внутрь бактериальной клетки поступает ограниченное количество веществ, некоторые ионы, моносахара. Скорость переноса веществ при пассивной диффузии незначительна и зависит от липофильности и размеров транспортирующихся молекул.

Облегчённая диффузия представляет собой энергонезависимый транспорт веществ по градиенту концентрации при помощи ферментов пермеаз. Пермеазы – это специфические мембранные белки, способствующие прохождению веществ через цитоплазматическую мембрану. Пермеаза фиксирует на себе молекулу переносимого вещества, вместе с которым пеодолевает цитоплазматическую мембрану, после чего комплекс «вещество – пермеаза» диссоциирует. Освободившаяся пермеаза используется для проведения других молекул. У прокариотов облегчённой диффузией внутрь клетки поступает только глицерин. При этом внутриклеточная концентрация глицерина соответствует таковой вне клетки. Облегчённая диффузия наиболее характерна для микроорганизмов-эукариот.

Активный транспорт – это энергозависимый перенос веществ внутрь клетки против градиента концентрации при помощи специфических ферментов. Активным транспортом в бактериальную клетку поступает подавляющее большинство веществ (ионы, углеводы, аминокислоты, липиды и др.). Активный транспорт может осуществляться: (1) без химической модификации переносимого вещества; (2) с химической модификацией.

Бактерии это самый древний организм на земле, а также самый простой в своем строении. Он состоит всего из одной клетки, которую можно увидеть и изучить только под микроскопом. Характерным признаком бактерий является отсутствие ядра, вот почему бактерии относят к прокариотам.

Некоторые виды образовывают небольшие группы клеток, такие скопления могут быть окружены капсулой (чехлом). Размер, форма и цвет бактерии сильно зависит от окружающей среды.

По форме бактерии различаются на: палочковидные (бациллы), сферические (кокки) и извитые (спириллы). Встречаются и видоизмененные – кубические, С-образные, звездчатые. Их размеры колеблются от 1 до 10мкм. Отдельные виды бактерий могут активно передвигаться при помощи жгутиков. Последние иногда превышают размер самой бактерии в два раза.

Виды форм бактерий

Для движения бактерии используют жгутики, количество которых бывает различное – один, пара, пучок жгутиков. Расположение жгутиков также бывает разным – с одной стороны клетки, по бокам или равномерно распределены по всей плоскости. Также одним из способов передвижения считается скольжение благодаря слизи, которой покрыт прокариот. У большинства внутри цитоплазмы есть вакуоли. Регулировка ёмкости газа в вакуолях помогает им двигаться в жидкости вверх или вниз, а также перемещаться по воздушных каналах почвы.

Ученые открыли более 10 тысяч разновидностей бактерий, но по предположениям научных исследователей в мире существует их более миллиона видов. Общая характеристика бактерий дает возможность определиться с их ролью в биосфере, а также изучить строение, виды и классификацию царства бактерий.

Места обитания

Простота строения и быстрота адаптации к окружающим условиям помогла бактериям распространиться в широком диапазоне нашей планеты. Они существуют везде: вода, почва, воздух, живые организмы – всё это максимально приемлемое место обитания для прокариотов.

Бактерии находили как на южном полюсе, так и в гейзерах. Они есть на океанском дне, а также в верхних слоях воздушной оболочки Земли. Бактерии живут везде, но их количество зависит от благоприятных условий. К примеру, большая численность видов бактерий проживает в открытых водоемах, а также почве.

Особенности строения

Клетка бактерии отличается не только тем, что в ней нет ядра, но и отсутствием митохондрий и пластид. ДНК данного прокариота находится в специальной ядерной зоне и имеет вид замкнутого в кольцо нуклеоида. У бактерии строение клетки состоит из клеточной стенки, капсулы, капсулоподобной оболочки, жгутиков, пили и цитоплазматичной мембраны. Внутреннее строение оформляют цитоплазма, гранулы, мезосомы, рибосомы, плазмиды, включения и нуклеоид.

Клеточная стенка бактерии выполняет функцию обороны и опоры. Вещества могут свободно протекать сквозь неё, благодаря проницаемости. Данная оболочка имеет в своем составе пектин и гемицеллюлозу. Некоторые бактерии выделяют особую слизь, которая может помочь защититься от пересыхания. Слизь формирует капсулу – полисахарид по химическому составу. В такой форме бактерия способна переносить даже очень большие температуры. Также она выполняет и другие функции, к примеру слипание с любыми поверхностями.

На поверхности клетки бактерии находятся тонкие белковые ворсинки – пили. Их может быть большая численность. Пили помогают клетке передавать генетический материал, а также обеспечивают слипание с другими клетками.

Под плоскостью стенки находится трехслойная цитоплазматичная мембрана. Она гарантирует транспорт веществ, а также имеет немалую роль в образовании спор.

Цитоплазма бактерий на 75 процентов произведена из воды. Состав цитоплазмы:

  • Рыбосомы;
  • мезосомы;
  • аминокислоты;
  • ферменты;
  • пигменты;
  • сахар;
  • гранулы и включения;
  • нуклеоид.

Обмен веществ у прокариотов возможен, как с участием кислорода, так и без его него. Большая их часть питаются уже готовыми питательными веществами органического происхождения. Очень мало видов способны сами синтезировать органические вещества из неорганических. Это сине-зеленые бактерии и цианобактерии, которые отыграли немалую роль в формировании атмосферы и насыщении её кислородом.

Размножение

В условиях, благоприятных для размножения, оно осуществляется почкованием или вегетативно. Бесполое размножение происходит в такой последовательности:

  1. Клетка бактерии достигает максимального объема и содержит необходимый запас питательных веществ.
  2. Клетка удлиняется, посередине появляется перегородка.
  3. Внутри клетки происходит дележ нуклеотида.
  4. ДНК основная и отделенная расходятся.
  5. Клетка делится пополам.
  6. Остаточное формирование дочерних клеток.

При таком способе размножения нету обмена генетической информацией, поэтому все дочерние клетки будут точной копией материнской.

Процесс размножения бактерий в неблагоприятных условиях более интересен. О способности полового размножения бактерий ученые узнали сравнительно недавно – в 1946 году. У бактерий нет разделения на женские и половые клетки. Но ДНК у них встречается разнополое. Две такие клетки при приближении друг к другу образовывают канал для передачи ДНК, происходит обмен участками – рекомбинация. Процесс довольно длительный, результатом которого являются две совершенно новые особи.

Большинство бактерий очень сложно увидеть под микроскопом, так как они не имеют своей окраски. Немногие разновидности имеют пурпурный или зеленый окрас, благодаря содержанию в них бактериохлорофилла и бактериопурпурина. Хотя если рассматривать некоторые колонии бактерий, становится ясно, что они выделяют окрашиваемые вещества в среду обитания и приобретают яркую окраску. Для того, чтобы подробней изучать прокариотов, их окрашивают.


Классификация

Классификация бактерий может быть основана на таких показателях, как:

  • Форма
  • способ передвижения;
  • способ получения энергии;
  • продукты жизнедеятельности;
  • степень опасности.

Бактерии симбионты живут в содружестве с иными организмами.

Бактерии сапрофиты проживают на уже отмерших организмах, продуктах и органических отходах. Они способствуют процессам гниения и брожения.

Гниение очищает природу от трупов и других отходов органического происхождения. Без процесса гниения не было бы круговорота веществ в природе. Так в чем же состоит роль бактерий в круговороте веществ?

Бактерии гниения - это помощник в процессе расщепления белковых соединений, а также жиров и других соединений, содержащих в себе азот. Проведя сложную химическую реакцию, они разрывают связи между молекулами органических организмов и захватывают молекулы белка, аминокислот. Расщепляясь, молекулы высвобождают аммиак, сероводород и другие вредные вещества. Они ядовиты и могут вызывать отравление у людей и животных.

Бактерии гниения быстро размножаются в благоприятных для них условиях. Так как это не только полезные бактерии, но и вредные, то чтобы не допустить преждевременного гниения у продуктов, люди научились их обрабатывать: сушить, мариновать, солить, коптить. Все эти способы обработки убивают бактерии и не дают им размножаться.

Бактерии брожения при помощи ферментов способны расщеплять углеводы. Эту способность люди заметили еще в древние времена и используют такие бактерии для изготовления молочнокислых продуктов, уксусов, а также других продуктов питания до сих пор.

Бактерии, трудясь в совокупности с другими организмами, делают очень важную химическую работу. Очень важно знать какие есть виды бактерий и какую пользу или вред приносят для природы.

Значение в природе и для человека

Выше уже отмечалось большое значение многих видов бактерий (при процессах гниения и различных типах брожения), т.е. выполнение санитарной роли на Земле.

Бактерии также играют огромную роль в круговороте углерода, кислорода, водорода, азота, фосфора, серы, кальция и других элементов. Многие виды бактерий способствуют активной фиксации атмосферного азота и переводят его в органическую форму, способствуя повышению плодородия почв. Особо важное значение имеют те бактерии, которые разлагают целлюлозу, являющиеся основным источником углерода для жизнедеятельности почвенных микроорганизмов.

Сульфатредуцирующие бактерии участвуют в образовании нефти и сероводорода в лечебных грязях, почвах и морях. Так, насыщенный сероводородом слой воды в Черном море является результатом жизнедеятельности сульфатредуцирующих бактерий. Деятельность этих бактерий в почвах приводит к образованию соды и содового засоления почвы. Сульфатредуцирующие бактерии переводят питательные вещества в почвах рисовых плантаций в такую форму, которая становится доступной для корней этой культуры. Эти бактерии могут вызывать коррозию металлических подземных и подводных сооружений.

Благодаря жизнедеятельности бактерий почва освобождается от многих продуктов и вредных организмов и насыщается ценными питательными веществами. Бактерицидные препараты успешно используются для борьбы с многими видами насекомых-вредителей (кукурузным мотыльком и др.).

Многие виды бактерий используются в различных отраслях промышленности для получения ацетона, этилового и бутилового спиртов, уксусной кислоты, ферментов, гормонов, витаминов, антибиотиков, белково-витаминных препаратов и т.д.

Без бактерий невозможны процессы при дублении кожи, сушке листьев табака, выработке шелка, каучука, обработке какао, кофе, мочении конопли, льна и других лубоволокнистых растений, квашении капусты, очистке сточных вод, выщелачивании металлов и т.д.

Какие бывают бактерии: виды бактерий, их классификация

Бактерии — это крошечные микроорганизмы, которые появились много тысячелетий назад. Увидеть микробы невооруженным глазом невозможно, но не следует забывать об их существовании. Существует огромное количество бацилл. Их классификацией, изучением, разновидностями, особенностями строения и физиологии занимается наука микробиология.

Микроорганизмы по-разному называются, в зависимости от своего рода действий и функций. Под микроскопом можно наблюдать, как эти маленькие существа взаимодействуют друг с другом. Первые микроорганизмы были довольно примитивными по форме, но и их значение ни в коем случае нельзя преуменьшать. С самого начала бациллы развивались, создавали колонии, пытались выжить в изменчивых климатических условиях. Разные вибрионы способны обмениваться аминокислотами, чтобы в результате нормально расти, развиваться.

Сегодня трудно сказать, сколько на земле есть видов этих микроорганизмов (это число превышает миллион), но самые известные и их названия знакомы практически каждому человеку. Неважно, какие бывают и как называются микробы, все они имеют одно преимущество — они живут колониями, так им намного легче адаптироваться и выживать.

Для начала давайте разберемся, какие существуют микроорганизмы. Самая простая классификация — это хорошие и плохие. Другими словами те, которые несут вред человеческому организму, становятся причиной многих болезней и те, которые приносят пользу. Далее мы поговорим детально, какие есть основные полезные бактериии дадим их описание.

Можно также классифицировать микроорганизмы соответственно их форме, характеристике. Наверное, многие помнят, что в школьных учебниках была специальная таблица с изображением разных микроорганизмов, а рядышком было значение и их роль в природе. Есть несколько типов бактерий:

  • кокки — небольшие шарики, которые напоминают цепочку, так как располагаются друг за дружкой;
  • палочковидные;
  • спириллы, спирохеты (имеют извитую форму);
  • вибрионы.

Бактерии разных форм

Мы уже упоминали, что одна из классификаций делит микробы на виды в зависимости от их форм.

Бактерии палочки тоже имеют некоторые особенности. Например, есть виды палочковидных с заостренными полюсами, с утолщенными, с закругленными или же с прямыми концами. Как правило, палочковидные микробы очень разные и всегда находятся в хаосе, они не выстраиваются цепочкой (за исключением стрептобацилл), не крепятся друг к дружке (кроме диплобацилл).

К микроорганизмам шаровидных форм микробиологи относят стрептококки, стафилококки, диплококки, гонококки. Это могут быть пары или же длинные цепочки из шариков.

Изогнутые бациллы — это спириллы, спирохеты. Они всегда активны, но не производят спор. Спириллы безопасны для людей, для животных. Отличить спириллы от спирохет можно, если обратить внимание на количество завитков, они менее извиты, имеют специальные жгутики на конечностях.

Виды болезнетворных бактерий

Например, группа микроорганизмов под названием кокки, а более детально стрептококки и стафилококки становятся причиной настоящих гнойных заболеваний (фурункулез, стрептококковая ангина).

Анаэробы прекрасно живут и развиваются без кислорода, для некоторых типов этих микроорганизмов кислород вообще становится смертельным. Аэробные микробы нуждаются в кислороде для полноценного существования.

Археи— это практически бесцветные одноклеточные организмы.

Патогенных бактерий нужно остерегаться, ведь они вызывают инфекции, грамотрицательные микроорганизмы считаются устойчивыми к антителам. Много информации есть о почвенных, гнилостных микроорганизмах, которые бывают вредными, полезными.

В общей сложности спириллы не представляют собой опасности, но некоторые виды могут вызывать содоку.

Разновидности полезных бактерий

О том, что бациллы бывают полезные и вредные, знают даже школьники. Некоторые названия люди знают на слух (стафилококк, стрептококк, чумная палочка). Это вредные существа, которые мешают не только внешней среде, но и человеку. Есть микроскопические бациллы, которые вызывают пищевые отравления.

Обязательно нужно знать полезную информацию о молочнокислых, пищевых, пробиотических микроорганизмах. Например, пробиотики, иными словами хорошие организмы, часто применяют в медицинских целях. Вы спросите: для чего? Они не позволяют вредным бактериям размножаться внутри человека, укрепляют защитные функции кишечника, хорошо влияют на иммунную систему человека.

Бифидобактерии также очень полезны для кишечника. Молочнокислые вибрионы включают в себя около 25 видов. В человеческом организме они имеются в огромных количествах, но не являются опасными. Наоборот, защищают желудочно-кишечный тракт от гнилостных и других микробов.

Говоря о хороших, нельзя не упомянуть и огромный вид стрептомицетов. Они известны тем, кто принимал левомицетин, эритромицин и подобные препараты.

Есть такие микроорганизмы, как азотобактеры. Они много лет живут в грунтах, благотворно влияют на почву, стимулируют рост растений, очищают землю от тяжелых металлов. Они незаменимы в медицине, сельском хозяйстве, медицине, пищевой промышленности.

Виды изменчивости бактерий

По своей природе микробы очень непостоянные, они быстро умирают, они могут быть спонтанными, индуцированными. Мы не будем вдаваться в подробности об изменчивости бактерий, так как эта информация больше интереснатем, кого интересует микробиология и все ее ответвления.

Виды бактерий для септиков

Жители частных домов понимают острую необходимость очищать сточные воды, а также выгребные ямы. Сегодня быстро и качественно очистить стоки можно с помощью специальных бактерий для септиков. Для человека это огромное облегчение, так как заниматься чисткой канализации—дело не из приятных.

Мы уже прояснили, где применяется биологический вид очистки стоков, а теперь поговорим о самой системе. Бактерии для септиков выращиваются в лабораториях, они убивают неприятный запах стоков, дезинфицируют дренажные колодцы, выгребные ямы, уменьшают объем сточных вод. Есть три вида бактерий, которые используются для септиков:

  • аэробные;
  • анаэробные;
  • живые (биоактиваторы).

Очень часто люди используют комбинированные методы очистки. Строго следуйте инструкциям на препарате, следите, чтобы уровень воды способствовал нормальному выживанию бактерий. Также не забывайте использовать канализацию как минимум раз в две недели, чтобы бактериям было чем питаться, иначе они умрут. Не забывайте, что хлор из порошков и жидкостей для чистки, убивает бактерии.

Самыми популярными являются бактерии Доктор Робик, Септифос, Вэйст Трит.

Виды бактерий в моче

По идее бактерий в моче быть не должно, но после различных действий и ситуаций, крошечные микроорганизмы поселяются, где им вздумается: во влагалище, в носу, в воде и так далее. Если бактерии были обнаружены во время анализов, это означает, что человек страдает от болезней почек, мочевого пузыря или мочеточников. Есть несколько путей, по которым микроорганизмы попадают в мочу. Перед лечением очень важно исследовать и точно определить тип бактерий и способ попадания. Определить это можно при биологическом посеве мочи, когда бактерии помещают в благоприятную среду обитания. Далее проверяется реакция бактерий на различные антибиотики.

Мы желаем вам оставаться всегда здоровыми. Следите за собой, регулярно мойте руки, берегите свой организм от вредоносных бактерий!