Сорбционная очистка. Адсорбция и ее характеристики. Теории полимолекулярной адсорбции Что такое адсорбция в биологии

Адсорбция – самопроизвольное перераспределение компонентов между поверхностным слоем и объемной фазой.

Физическая адсорбция обусловлена действием физических сил притяжения – различными типами ван-дер-ваальсового взаимодействия. Обратима, является экзотермическим процессом (протекающим с выделением теплоты).

Химическая адсорбция (хемосорбция ) происходит за счет образования химических связей между молекулами (ионами, атомами) адсорбата и адсорбента. Хемосорбция обычно необратима.

Поглощающее (адсорбирующее) вещество называют адсорбентом , а поглощающееся (адсорбирующееся) – адсорбатом .

Для количественной характеристики адсорбции используются две величины:

1.удельная (гиббсовская) адсорбция Г i: , где n i – количество вещества в реальной системе; – в фазе I, – в фазе II идеальной системы, s – площадь межфазной поверхности.

Т. е. гиббсовская адсорбция – это избыток вещества в межфазном поверхностном слое, приходящийся на единицу площади поверхности по сравнению с количеством вещества в таком же объеме фазы. , где – толщина поверхностного слоя,

[кг/м 2 ], либо [моль/кг ], либо [кг/кг ].

2.полная адсорбция а i . Полная адсорбция – количество вещества в поверхностном слое толщиной δ в расчете на единицу поверхности или массы адсорбента:

Между Г i и а i существует взаимосвязь: , а i всегда больше0

Г i может быть больше и меньше 0.

При адсорбции в условиях Т ‹ Т кр имеет место конденсация, и мономолекулярный слой не компенсирует поверхностную энергию è образуется несколько адсорбционных слоев (полимолекулярная адсорбция ).

Полимолекулярная адсорбция реализуется в двух случаях:



Для первого случая была предложена потенциальная теория адсорбции Поляни, которая дает термодинамическое описание процесса адсорбции.

Теория Поляни

Основные постулаты:

Все адсорбированное вещество находится в конденсированном состоянии;

Адсорбат у поверхности адсорбента образует адсорбционный объем V.

где V m – молярный объем адсорбата в конденсированном состоянии.

У поверхности действует поле адсорбционных сил, интенсивность которых уменьшается с расстоянием. Для характеристики интенсивности поля введен адсорбционный потенциал ε .

Физический смысл ε это изотермическая работа по переносу 1 моль пара адсорбата из достаточно удаленного от поверхности объема в адсорбционный объем. или это изотермическая работа по сжатию адсорбата от давления р до давления насыщения р s .

где р s – давление насыщенного пара адсорбата в отсутствие адсорбента;

р – равновесное давление, т.е. давление пара адсорбата в присутствии адсорбента.

Каждой точке изотермы адсорбции соответствуют определенные значения а и р/р s , которые позволяют получить значения V и ε , т. е. найти зависимость адсорбционного потенциала от объема адсорбата на адсорбенте – потенциальную кривую адсорбции .

Потенциальная характеристическая кривая данного адсорбента

Т. е. адсорбционный потенциал от температуры не зависит.

Для данного адсорбента и адсорбата, зная изотерму адсорбции при данной температуре Т 1 , можно рассчитать изотерму для другой температуры Т 2 . .

Рассчитаем а 2 и р 2 для другой температуры: ,

ê

Важная особенность потенциальных кривых была обнаружена Дубининым. Она заключается в том, что характеристические кривые для одного и того же объема адсорбента и разных адсорбатов при всех значениях объемов адсорбата в поверхностном слое находятся в постоянном отношении β : ,где β – коэффициент аффинности, ε – адсорбционный потенциал для одного адсорбата, ε о – для другого.

Для данного адсорбента, имея β и зная изотерму адсорбции, можно рассчитать изотерму любого другого адсорбата на данном адсорбенте.

D Эта теория не дает уравнения изотермы адсорбции, только термодинамическое описание.

Для второго случая используют теорию БЭТ (теория Брунауэра, Эммета и Теллера).

Теория БЭТ. Согласно этой теории каждый адсорбционный центр s х связывает несколько молекул адсорбента Х , образуя цепочки:

Уравнение, описывающее адсорбцию, выглядит следующим образом:

, где ; К р – константа адсорбции; К L – константа конденсации.

Для нахождения констант этого уравнения на основании экспериментальных данных строят график:

D Это уравнение работает только в интервале , в котором предполагается отсутствие взаимодействия между цепочками адсорбированных молекул.

При – большая степень заполнения, возникают боковые взаимодействия между молекулами.

При – малая степень заполнения, на величину адсорбции сильно влияют энергетические неоднородности поверхности.

C теория имеет практическое значение, т. к. можно определить удельную поверхность адсорбента. , где s о – площадь, занимаемая молекулой адсорбата.

Величина а ∞ зависит от энергетической равноценности поверхности и наличия пор.

Для характеристики адсорбента используется понятие «пористость » П :

3. Что такое аэрозоли? Чем обусловлены их специфические свойства и как их разрушают?

Аэрозо́ль - дисперсная система, состоящая из мелких твёрдых или жидких частиц, взвешенных в газовой среде (обычно в воздухе). Aэрозоли делят на туманы – системы с жидкой дисперсной фазой и дымы – системы с твердыми частицами. Дымы, в которых частицы дисперсной фазы адсорбировали значительное количество влаги из атмосферы, очевидно, являются одновременно и дымами, и туманами. Такие системы называются смогом.

Размеры частиц в них изменяются от нескольких мм до 10 −7 мм. Образуются при механическом измельчении и распылении твёрдых тел или жидкостей, дроблении, истирании, взрывах, горении, распылении в пульверизаторах.

Классификация. По дисперсности аэрозоли с твердой дисперсной фазой разделяют, как и все дисперсные системы, на диспергационные и конденсационные аэрозоли. Диспергационные аэрозоли, образующиеся при измельчении твердых тел или распылении жидкостей имеют довольно крупные частицы и, как правило, полидисперсны. Аэрозоли, полученные методом конденсации из пересыщенных паров или в результате химических реакций обычно являются высокодисперсными системами с более однородными по размеру частицами.

Основные характеристики. Дисперсионную среду характеризуют химическим составом, температурой, давлением, степенью ионизации, параметрами внешних физических полей, полем скоростей течения, наличием турбулентности и ее параметрами, наличием и величиной градиентов температуры и концентрации компонентов. Важнейшие параметры дисперсной фазы аэрозоли - объемная доля частиц φ υ и их массовая доля φ m , число частиц в единице объема (счетная концентрация) n р, средний размер частицы d p и ее электрический заряд.

Свойства. Важнейшие свойства аэрозолей - способность частиц сохраняться во взвешенном состоянии, перемещаться преим. как единое целое и при столкновении прилипать друг к другу или к какой-либо поверхности с вероятностью, равной единице.

Газовая дисперсионная среда вносит ряд своеобразных черт в свойства аэрозолей.1.- это их лиофобность и отсутствие эффективных путей стабилизации. 2- размер частиц дисперсной фазы r по порядку величины соизмерим с длиной свободного пробега молекул в газе Λ м. Движение частиц определяется числом Кнудсена: Kn= Λ м /2r. При Kn˂ 10 -2 применимы законы механики, закон Стокса:

Для частиц малого размера Kn˃10 2 , применимы законы молекулярно-кинетической теори:

υ=F/2m M * Λ r / ΰ M , где m M - масса молекул газа, ΰ M – средняя скорость их движения, Λ r - длина свободного пробега частицы.

Для большенства наиболее важных аэрозольных систем число Кнудсена имеет промежуточное значение: 10 -2 ˂Kn ˂ 10 2 , тогда используется формула Кеннингема:

υ=F/6πηr (1+ 1,26Kn)

Многие специфические свойства аэрозолей связаны с особенностями дисперсионной среды - воздуха, его низкой вязкостью и малой электрической проводимостью. Лиофобность аэрозолей и высокие коэффициенты диффузии в газовой фазе обусловливают большую скорость процессов изотермической перегонки и коагуляции, следствием которых является нарушение агрегативной устойчивости системы. В реальных аэрозолях концентрация дисперсной фазы, как правило, составляет не более 10 8 - 10 6 частиц/см 3 . Размер частиц в большинстве аэрозолей оказывается в интервале 10~5 - 10~3 см: более крупные частицы быстро оседают, а мелкие исчезают вследствие коагуляции.

Аэрозольные частицы способны приобретать электрический заряд, если они образуются конденсацией на ионах. Незаряженные частицы могут захватывать газовые ионы, направленно движущиеся к частицам во внешнем поле или диффундирующие в среде. Диспергационные частицы могут приобретать заряд и в процессе образования - при разбрызгивании жидкостей (баллоэлектрический эффект) или распылении порошков (трибоэлектрический эффект), при освещении (фотоэффект), радиоактивном распаде и т.п.

Важнейшие процессы, происходящие в аэрозолях - седиментация, броуновское движение, коагуляция и испарение частиц.

Важнейшие оптические свойства аэрозолей - рассеяние и поглощение ими света.

Разрушение аэрозолей происходит путем:

Рассеивания под действием воздушных течений или вследствие одноименных зарядов частиц;

Седиментации;

Диффузии к стенкам сосуда;

Коагуляции;

Испарения частиц дисперсной фазы (в случае аэрозолей летучих веществ).

Инерционное осаждение проводится с помощью центробежных отделителей, называемых циклонами. Они представляют собой металлические цилиндры, в которых аэрозоль по спирали движется сверху вниз, при этом частицы оседают на стенках цилиндра, а очищенный газ по специальной трубе выводится из циклона. Высокопроизводительный циклон может обеспечить практически полное улавливание частиц крупнее 30 мкм, частицы размерами 5 мкм улавливаются на 80%, а размерами 2 мкм - менее чем на 40%. К инерционному осаждению можно отнести и мокрое пылеулавливание. В этих случаях главная задача состоит в том, чтобы частицы привести в соприкосновение с каплями жидкости, вместе с которыми они удаляются из аппарата. Мокрое пылеулавливание осуществляется двумя способами:

1) для частиц с d 2-5 мкм используют скрубберы (полые или с насадкой), мокрые циклоны, барботажные или пенные пылеулавливатели;

2) для частиц с d 2 мкм используются скоростные пылеулавливатели.

Ультразвуковые установки используются для разрушения туманов. К недостаткам этого метода следует отнести следующее: он не разрушает сильно разбавленные аэрозоли, оставляя нескоагулированной самую вредную - высокодисперсную часть аэрозоля.

Электростатическое осаждение с успехом применяют для улавливания пылей и туманов в цементной, сернокислотной, металлургической промышленности и особенно для улавливания летучей золы из дымовых газов электростанций. Аэрозоль пропускают между электродами, создающими поле высокого напряжения (70-100 кВ), возникает коронный разряд, при котором катод испускает огромное количество электронов. Электроны ионизируют молекулы газа. Образующиеся анионы адсорбируются частицами аэрозоля, затем отрицательно заряженные частицы осаждаются на положительно заряженной стенке трубы, после чего собираются в специальном бункере.

Конденсационный метод пылеулавливания. В этом методе используется свойство аэрозольных частиц выступать в роли центров конденсации водяных паров. Механизм конденсационного метода состоит в том, что за счет конденсации водяных паров трудноуловимый тонкодисперсный аэрозоль превращается в туман, капли которого размерами 2-5 мкм легко осаждаются простыми методами. Достоинством этого метода является то, что превратить в капли тумана можно частицы любой природы и любого размера.

4. С каким коллоидно-химическим явлением в организме человека связано чувство жажды? Охарактеризуйте это явление и его особенности в коллоидных системах по сравнению с истинными растворами.

С точки зрения коллоидно-химической физиологии человека его организм представляет собой сложный комплекс коллоидных систем в их постоянном динамическом взаимодействии..

Коллоиды поступают в организм в виде пищевых веществ и в процессе пищеварения превращаются в специфические, характерные для данного организма коллоиды.

ЖАЖДА – своеобразное чувство, вызывающее потребность в питье и указывающее на нарушение водного баланса организма.

Ощущение жажды связано с изменением состава крови и тканевых жидкостей. А кровь является типичными примером ткани организма, где одни коллоиды находятся внутри других. Решающим фактором здесь, по-видимому, является повышение осмотического давления крови, возникающее в результате повышения в ней концентрации поваренной соли, мочевины и других веществ. (Осмотическое давление равно тому давлению, которое производила бы дисперсная фаза (растворенное вещество), если бы она в виде газа при той же температуре занимала тот же объем, что и коллоидная система (раствор).)

Действительно, экспериментально удается показать, что введение в кровь гипертонических растворов поваренной соли, хлористого кальция, мочевины и глюкозы вызывает ощущение жажды.

В истинных растворах, отделенных от растворителя полупроницаемой перегородкой, может быть измерено осмотическое давление, величина которого зависит от концентрации растворенного вещества и для разбавленных растворов описывается уравнением Вант Гоффа:

Где С – массовая концентрация, кг/м3.

Для коллоидных систем можем записать

Где n – частичная концентрация частиц/м3.

Для коллоидных систем осмотическое давление не превышает 10 Па , в то время, как для истинных растворов при с = 10 2 моль/м 3 оно достигает 10 5 Па .

В нашем мозгу есть «центр жажды». Он реагирует на количество соли в крови. Когда там происходят изменения, он посылает сообщения в заднюю часть горла. Ответные сообщения оттуда возвращаются в мозг, и такая оперативная связь позволяет нам сказать, что мы чувствуем жажду.

5. Изобразите формулы двух мицелл гидрозоля С, полученного из растворов веществ А и В в случае избытка вещества А или В. А - CaCl 2 , В - H 2 SO 4 , С - CaSO 4

Реакция: CaCl 2 + H 2 SO 4 = CaSO 4 + 2HCl

В первом случае(избыток А): {mnCa 2+ 2(n-x)Cl - } 2 x + 2xCl -

В избытке B: {mnSO 4 2- 2(n-x)H + } 2 x - 2xH +

Осадок образовался в результате коагуляции гидрозоля ZnS. Напишите формулу частиц осадка, если известно, что промывание его водой приводит к получению коллоидного раствора с положительно заряженными частицами. Назовите метод получения гидрозоля и запишите его схему.

В данном случае используют метод химической конденсации. Он основан на проведении химических реакций, сопровождающихся образованием нерастворимых или малорастворимых веществ. Для этой цели используются различные типы реакций – разложения, гидролиза, окислительно-восстановительные и т.д.

В этом случае – гидролиз.

Реакция: ZnS + H2O = H2S + ZnO

Формула полученной мицеллы: {m nZn 2+ (n - x) S 2- }2 x+ * xS 2- }


Билет 6


Похожая информация.


АДСОРБЦИЯ (от лат. ad-на, при и sorbeo-поглощаю), изменение (обычно-повышение) в-ва вблизи пов-сти раздела фаз ("поглощение на пов-сти"). В общем случае причина адсорбции - нескомпенсированность межмол. сил вблизи этой пов-сти, т.е. наличие адсорбц. силового поля. Тело, создающее такое поле, наз. , в-во, к-рого могут адсорбироваться,-а д с о р б т и в о м, уже адсорбиров. в-во-адсорбатом. Процесс, обратный адсорбции, наз. .

Природа адсорбц. сил м. б. весьма различной. Если это ван-дер-ваальсовы силы, то адсорбция наз. физической, если валентные (т.е. адсорбция сопровождается образованием поверхностных хим. соединений), - химической, или . Отличит. черты - необратимость, высокие тепловые эффекты (сотни кДж/), активированный характер. Между физ. и хим. адсорбцией существует множество промежут. случаев (напр., адсорбция, обусловленная образованием ). Возможны также разл. типы физ. адсорбции наиб. универсально проявление дисперсионных межмол. сил притяжения, т. к. они приблизительно постоянны для с пов-стью любой хим. природы (т. наз. неспецифич. адсорбция). Физ. адсорбция может быть вызвана электростатич. силами (взаимод. между , диполями или квадруполями); при этом адсорбция определяется хим. природой адсорбтива (т. наз. специфич. адсорбция). Значит. роль при адсорбции играет также геометрия пов-сти раздела: в случае плоской пов-сти говорят об адсорбции на открытой пов-сти, в случае слабо или сильно искривленной пов-сти-об адсорбции в порах .

В теории адсорбции различают статику (система адсорбент-ад-сорбат находится в термодинамич. ) и кинетику ( нет).

Статика адсорбции

Т.к. система равновесна, то хим. потенциалы адсорбата и адсорбтива одинаковы; адсорбата вследствие уменьшения подвижности при адсорбции меньше адсорбтива. Поэтому при инертном всегда отрицательна, т.е. адсорбция экзотермична. Учет изменения может изменить этот вывод. Напр., при в-в, в к-рых набухает, последнего (из-за увеличения подвижности ) может столь сильно возрасти, что адсорбция становится эндотермической. В дальнейшем в статье рассматривается только экзотермич. адсорбция.

Различают интегральную, дифференц., изостерич. и среднюю теплоты адсорбции. Интегральная теплота Q равна убыли (при V= const -внутр. энергии) при изменении адсорбции от a 1 до а 2 (в частном случае м.б. а 1 =0): Q= -(Н 2 - Н 1) Эту величину относят обычно к массе и выражают в Дж/кг.

Существует еще один механизм, приводящий к дополнит. адсорбции адсорбтивов ниже их критич. т-ры на пористых при сравнительно высоких значениях p/p s . Это - . Если в поре образовался вогнутый адсорбата, то в ней начинается при p/p s <1. Согласно ур-нию Кельвина:

где-поверхностное натяжение адсорбата, V-его мольный объем, r-радиус кривизны . приводит к резкому подъему изотермы адсорбции. При этом часто (но не всегда) наблюдается т. наз. адсорбц. гистерезис, т.е. несовпадение адсорбц. и десорбц. ветвей изотермы. Как правило, это связано с тем, что формы при адсорбции и не совпадают.

Используя потенциальную теорию, М.М. Дубинин предложил и разработал теорию объемного заполнения микро-пор (ТОЗМ). Было постулировано, что эта теория применима только к микропористым . Особенность таких , в к-рых линейные размеры пор r1 нм, состоит в том, что весь объем их пор "заполнен" адсорбц. полем. Поэтому при адсорбции они заполняются не послойно, а объемно. Величина в рассматриваемом случае - это не адсорбц. потенциал, а с точностью до знака хим. потенциал адсорбата, отсчитываемый от уровня хим. при той же т-ре. Вся совокупность пор разделяется на три класса: микропоры (r0,6 нм), мезопоры (0,6 нмr20 нм) и макропоры (r20 нм). Адсорбция в микропорах происходит по схеме ТОЗМ, т.е. объемно, в мезопорах-по механизму послойного заполнения, завершаемого . Макропоры при адсорбц. никакой роли не играют.

Введя представление о ф-ции распределения объемов пор по значениям хим. потенциала адсорбата в них, М.М. Дубинин и Л. В. Радушкевич получили ур-ние изотермы адсорбции ТОЗМ, к-рое обычно записывают в след. форме:

где п, Е и а 0 -параметры (а 0 = а при р = p s). Температурная зависимость a 0:

где= -(da 0 /dT); a 0 0 = a 0 при Т= Т 0 . Параметры п и Е практически не зависят от т-ры. В большинстве случаев п = 2. Лишь для случаев, когда начальные теплоты адсорбции очень велики, п > 2. Для пересчета изотерм адсорбции с одного адсорбтива на другой приближенно допускают, что E 1 /E 2 P 1 /P=и что a 01 /a 02 V 1 /V 2 ,где P i -парахор, V i - мольный объем адсорбтива.

Пользуясь представлением, что в реальном имеются поры разных размеров, и вводя распределение значений Е с дисперсией, равной Ф. Стекли предложил обобщение ур-ния (23), названное ур-нием Дубинина-Стёкли:

Кинетика адсорбции

Адсорбция, как и любой реальный процесс, происходит во времени. Поэтому полная теория адсорбции должна содержать раздел о кинетике адсорбции. Элементарный адсорбции осуществляется практически мгновенно (исключение-хемосорбция). Поэтому временные зависимости адсорбции определяются в осн. механизмом , т. е. подвода адсорбтива к месту адсорбции. Если адсорбция на открытой пов-сти не мгновенна, такой процесс происходит во внешнедиффузионной области; при этом законы не специфичны для адсорбции. В случае же пористых , кроме внеш. , важную роль начинает играть внутр. , т.е. перенос адсорбтива в порах при наличии в них градиента . Механизм такого переноса может зависеть от адсорбтива и размеров пор.

Различают молекулярную, кнудсеновскую и поверхностную (фольмеровскую) . Молекулярная осуществляется, если длина своб. пробега в порах меньше размера пор, кнудсеновская-если эта длина превышает размер пор. При поверхностной перемещаются по пов-сти без перехода в объемную фазу. Однако значения коэф. не одинаковы для разных механизмов . Во мн. случаях экспериментально не удается установить, как именно происходит , и поэтому вводят т. наз. эффективный коэф. , описывающий процесс в целом.

Осн. эксперим. материалом о кинетике адсорбции служит т. наз. кинетич. кривая, т.е. ф-ция= а/а равн =f(t) где-относительная адсорбция, равная отношению текущего значения адсорбции а к a равн - её значению при времени t. Для истолкования кинетич. кривой в простейшем случае предполагают, что зерно имеет совершенно однородную по объему пористую структуру (эту модель наз. квазигомогенной). значит. усовершенствование квазигомогенной модели-представление о том, что каждое зерно содержит области с более крупными и более тонкими порами. в таком зерне описывается двумя разл. коэффициентами.

В случае открытой пов-сти, принимая модель Ленгмюра, легко получить кинетич. ур-ние адсорбции. Скорость приближения к представляет собой разность скоростей адсорбции и . Считая, как обычно в кинетике, что скорости процессов пропорциональны реагирующих в-в, имеем:

где k адс и k дес - соотв. адсорбции и . в газовой фазе считается постоянным. При интегрировании этого ур-ния от t = 0 до любого значения t получим:

Отсюда при f имеем:= равн. Поэтому окончательно имеем:

где k = k адс + k дес.

Влияние т-ры на скорость адсорбции выражается ур-нием, аналогичным ур-нию Аррениуса. С увеличением т-ры k адс экспоненциально возрастает. Т.к. в порах связана с преодолением активац. барьеров, температурные зависимости k адс и k дес не одинаковы.

Знание скоростей важно не только для теории адсорбции, но и для расчета пром. адсорбц. процессов. При этом обычно имеют дело не с отдельными зернами , а с их слоями. Кинетика процесса в слое выражается очень сложными зависимостями. В каждой точке слоя в данный момент времени величина адсорбции определяется не только видом ур-ния изотермы адсорбции и закономерностями кинетики процесса, но также аэро- или гидродинамич. условиями обтекания зерен газовым или жидкостным потоком. Кинетика процесса в слое в отличие от кинетики в отдельном зерне наз. динамикой адсорбции, общая схема решения задач к-рой такова: составляется система дифференц. ур-ний в частных производных, учитывающая характеристики слоя, изотерму адсорбции, диффузионные характеристики (коэф. , виды переноса массы по слою и внутри зерен), аэро- и гидродинамич. особенности потока. Задаются начальные и краевые условия. Решение этой системы ур-ний в принципе приводит к значениям величин адсорбции в данный момент времени в данной точке слоя. Как правило, аналитич. решение удается получить только для простейших случаев, поэтому такая задача решается численно с помощью ЭВМ.

При опытном изучении динамики адсорбции через слой пропускают газовый или жидкостный поток с заданными характеристиками и исследуют состав выходящего потока как ф-цию времени. Появление поглощаемого в-ва за слоем наз. проскоком, а время до проскока - временем защитного действия. Зависимость данного компонента за слоем от времени наз. выходной кривой. Эти кривые служат осн. эксперим. материалом, позволяющим судить о закономерностях динамики адсорбции.

Аппаратурное оформление адсорбционных процессов

Существует множество технол. приемов проведения адсорбц. процессов. Широко распространены циклич. (перио-дич.) установки с неподвижным слоем , осн. узел к-рых - один или неск. , выполненных в виде полых колонн, заполняемых гранулированным . Газовый (или жидкостной) поток, содержащий адсорбируемые компоненты, пропускается через слой до проскока. После этого в регенерируют, а газовый поток направляют в др. . включает ряд стадий, из к-рых ос новная-десорбция, т.е. выделение ранее поглощенного в-ва из . проводят нагреванием, сбросом в газовой фазе, вытеснением (напр., острым водяным ) или комбинацией этих методов. Т. к. времена адсорбции и не совпадают, подбирают такое число одновременно работающих и регенерируемых , чтобы в целом процесс шел непрерывно.

По техн. и экономич. соображениям не доводят до конца. Поэтому рабочая емкость

Основные понятия

Поглощаемое вещество, ещё находящееся в объёме фазы, называют адсорбтив , поглощённое - адсорбат . В более узком смысле под адсорбцией часто понимают поглощение примеси из газа или жидкости твёрдым веществом (в случае газа и жидкости) или жидкостью (в случае газа) - адсорбентом . При этом, как и в общем случае адсорбции, происходит концентрирование примеси на границе раздела адсорбент-жидкость либо адсорбент-газ. Процесс, обратный адсорбции, то есть перенос вещества с поверхности раздела фаз в объём фазы, называется десорбция . Если скорости адсорбции и десорбции равны, то говорят об установлении адсорбционного равновесия . В состоянии равновесия количество адсорбированных молекул остается постоянным сколь угодно долго, если неизменны внешние условия (давление, температура и состав системы) .

Адсорбция и хемосорбция

На поверхности раздела двух фаз помимо адсорбции, обусловленной в основном физическими взаимодействиями (главным образом это Ван-дер-Ваальсовы силы), может идти химическая реакция. Этот процесс называется хемосорбцией . Чёткое разделение на адсорбцию и хемосорбцию не всегда возможно. Одним из основных параметров по которым различаются эти явления является тепловой эффект: так, тепловой эффект физической адсорбции обычно близок к теплоте сжижения адсорбата, тепловой эффект хемосорбции значительно выше. Кроме того в отличие от адсорбции хемосорбция обычно является необратимой и локализованной. Примером промежуточных вариантов, сочетающих черты и адсорбции и хемосорбции является взаимодействие кислорода на металлах и водорода на никеле: при низких температурах они адсорбируются по законам физической адсорбции, но при повышении температуры начинает протекать хемосорбция.

Схожие явления

В предыдущем разделе говорилось о случае протекания гетерогенной реакции на поверхности- хемосорбции. Однако бывают случаи гетерогенных реакций по всему объему, а не только на поверхности- это обычная гетерогенная реакция. Поглощение по всему объёму может проходить и под воздействием физических сил- этот случай называется абсорбцией.

Физическая адсорбция

Модели физической адсорбции
Образование монослоя Энергетическая диаграмма

Рис. 1: a) адсорбент, b) адсорбат, c) адсорбтив (газовая фаза или раствор) Рис. 2: a) адсорбент, b) адсорбат, c) газовая фаза, d - расстояние, E - энергия, E b - энергия адсорбции, (1) десорбция, (2) адсорбция
Поликонденсация Избирательная адсорбция
Рис. 3: a) адсорбент, b) адсорбат, c) конденсат, d) адсорбтив (газовая фаза или раствор) Рис. 4: a) адсорбент, b) адсорбат, c) адсорбтивы (газовая фаза или раствор): показана преимущественная адсорбция частиц голубого цвета

Причиной адсорбции являются неспецифические (то есть не зависящие от природы вещества) Ван-дер-Ваальсовы силы . Адсорбция, осложнённая химическим взаимодействием между адсорбентом и адсорбатом, является особым случаем. Явления такого рода называют хемосорбцией и химической адсорбцией . «Обычную» адсорбцию в случае, когда требуется подчеркнуть природу сил взаимодействия, называют физической адсорбцией .

Физическая адсорбция является обратимым процессом, условие равновесия определяется равными скоростями адсорбции молекул адсорбтива P на вакантных местах поверхности адсорбента S * и десорбции - освобождения адсорбата из связанного состояния S − P :

;

уравнение равновесияя в таком случае:

, ,

где - доля площади поверхности адсорбента, занятая адсорбатом, - адсорбционный коэффициент Ленгмюра, а P - концентрация адсорбтива.

Поскольку и, соответственно, , уравнение адсорбционного равновесия может быть записано следующим образом:

Уравнение Ленгмюра является одной из форм уравнения изотермы адсорбции. Под уравнением изотермы адсорбции (чаще применяют сокращённый термин - изотерма адсорбции) понимают зависимость равновесной величины адсорбции от концентрации адсорбтива a=f(С) при постоянной температуре (T=const ). Концентрация адсорбтива для случая адсорбции из жидкости выражается, как правило, в мольных либо массовых долях. Часто, особенно в случае адсорбции из растворов, пользуются относительной величиной: С/С s , где С - концентрация, С s - предельная концентрация (концентрация насыщения) адсорбтива при данной температуре. В случае адсорбции из газовой фазы концентрация может быть выражена в единицах абсолютного давления, либо, что особенно типично для адсорбции паров, в относительных единицах: P/P s , где P - давление пара, P s - давление насыщенных паров этого вещества. Саму величину адсорбции можно выразить также в единицах концентрации (отношение числа молекул адсорбата к общему числу молекул на границе раздела фаз). Для адсорбции на твёрдых адсорбентах, особенно при рассмотрении практических задач, используют отношение массы или количества поглощённого вещества к массе адсорбента, например мг/г или ммоль/г.

Значение адсорбции

Адсорбция - всеобщее и повсеместное явление, имеющее место всегда и везде, где есть поверхность раздела между фазами. Наибольшее практическое значение имеет адсорбция поверхностно-активных веществ и адсорбция примесей из газа либо жидкости специальными высокоэффективными адсорбентами. В качестве адсорбентов могут выступать разнообразные материалы с высокой удельной поверхностью: пористый углерод (наиболее распространённая форма - активированный уголь), силикагели , цеолиты а также некоторые другие группы природных минералов и синтетических веществ.

Установка для проведения адсорбции называется адсорбером .

См. также

  • Азотные установки адсорбционные

Примечания

Литература

  • Фролов Ю. Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы. - М.: Химия, 1989. - 464 с.
  • Кельцев Н. В. Основы адсорбционной техники. - М.: Химия, 1984. - 592 с.
  • Грег С., Синг К. Адсорбция, удельная поверхность, пористость. - М.: Мир, 1984. - 310 с.*
  • Адамсон А. Физическая химия поверхностей. – М.: Мир. 1979. – 568 с.
  • Оура К., Лифшиц В. Г., Саранин А. А. и др. Введение в физику поверхности / Под ред. В. И. Сергиенко. - М.: Наука, 2006. - 490 с.
  • Карнаухов А.П. Адсорбция. Текстура дисперсных и пористых материалов. - Новосибирск: Наука. 1999. - 470 с.
  • Химическая энциклопедия. Т. 1. - М.: Советская энциклопедия, 1990. - 623 с.
  • Полторак О.М. Термодинамика в физической химии. - М.: Высшая школа, 1991. - 319 с.

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.

) — повышение концентрации компонента в поверхностном слое вещества (на границе раздела фаз) по сравнению с ее значением в каждой объемной фазе.

Описание

Следует отличать адсорбцию от абсорбции, при которой вещество диффундирует в объем жидкости или и образует раствор или . Термин сорбция объединяет оба понятия. Вещество, на поверхности которого происходит адсорбция, называется адсорбентом, а поглощаемое - адсорбатом. В зависимости от характера взаимодействия между молекулой адсорбата и адсорбентом адсорбцию принято подразделять на (слабые взаимодействия) и (сильные взаимодействия). Четкой границы между физической адсорбцией и хемосорбцией не существует; в качестве граничного значения принята энергия связи между адсорбатом и адсорбентом, равная 0,5 эВ на атом или молекулу.

Процесс, обратный адсорбции, называется . Если скорости адсорбции и десорбции равны, то говорят об установлении адсорбционного равновесия. В состоянии равновесия количество адсорбированных молекул остается постоянным сколь угодно долго, если неизменны внешние условия (давление, температура и состав системы).

На практике адсорбция широко используется для концентрирования веществ, очистки газов и жидкостей от примесей. Адсорбционные методы анализа применяются для определения твердых веществ, оценки размера А нанесенных частиц (в том числе наноразмерных) на поверхности носителя и т. п.

Авторы

  • Саранин Александр Александрович
  • Смирнов Андрей Валентинович

Источники

  1. Адамсон А. Физическая химия поверхностей. - М.: Мир. 1979. - 568 с.
  2. Оура К., Лифшиц В. Г., Саранин А. А. и др. Введение в физику поверхности / Под ред. В. И. Сергиенко. - М.: Наука, 2006. - 490 с.
  3. Карнаухов А.П. Адсорбция. Текстура дисперсных и пористых материалов. - Новосибирск: Наука. 1999. - 470 с.
  4. Химическая энциклопедия. Т. 1. - М.: Советская энциклопедия, 1990. - 623 с.
  5. Полторак О.М. Термодинамика в физической химии. - М.: Высшая школа, 1991. - 319 с.

АДСОРБЦИЯ (от латинского ad - на и sorbeo поглощать), поглощение вещества из газовой фазы или жидкого раствора поверхностным слоем твёрдого тела или жидкости.

Явление адсорбции вызывается наличием адсорбционного силового поля, создаваемого за счёт нескомпенсированности межмолекулярных сил в поверхностном слое. Вещество, создающее такое поле, называется адсорбентом, вещество, молекулы которого могут адсорбироваться, - адсорбтивом, уже адсорбированное вещество - адсорбатом. Процесс, обратный адсорбции, - десорбция.

Адсорбция - частный случай сорбции. Применение адсорбционных процессов датируется концом 18 века, когда независимо и практически одновременно появились три публикации: итальянский натуралист Ф. Фонтана и К. Шееле в 1777 году описали поглощение газов древесным углем, в 1785 году Т. Е. Ловиц обнаружил способность таких углей обесцвечивать растворы винных кислот, поглощая органические примеси.

Физическая адсорбция вызывается силами молекулярного взаимодействия. Основной вклад в энергию взаимодействия вносят дисперсионные силы. Их величина приблизительно постоянна для адсорбентов любой химической природы, поэтому вызываемое этими силами взаимодействие носит неспецифический характер. Иногда дисперсионное взаимодействие усиливается электростатическим - ориентационным и индукционным. Электростатическое взаимодействие зависит от химической природы адсорбтива, следовательно, является специфическим. Специфическое взаимодействие может усиливаться за счёт образования водородных связей между адсорбированными молекулами и полярными группами, находящимися на поверхности адсорбента (например, водородные связи образуются при адсорбции воды и спиртов на силикагеле, поверхность которого покрыта гидроксильными группами). Теплота физической адсорбции составляет, как правило, 8-25 кДж/моль. Физическую адсорбцию можно обратить, понизив давление газа или концентрацию растворённого вещества. Физическая адсорбция не вызывает изменений индивидуальных свойств молекул адсорбата. Поглощение вещества может быть обусловлено образованием химической связи между молекулами адсорбата и поверхностным слоем адсорбента. Такое поглощение называется хемосорбцией. Хемосорбция необратима, её теплота свыше 80 кДж/моль. При хемосорбции молекулы адсорбата образуют поверхностные химические соединения с адсорбентом.

Равновесная адсорбция . Если скорости адсорбции и десорбции равны, то это свидетельствует об установлении адсорбционного равновесия. Кривые зависимости равновесной адсорбции от концентрации или давления адсорбтива при постоянной температуре называются изотермами адсорбции. Наиболее простая изотерма адсорбции представляет собой прямую, выходящую из начала координат, где на оси абсцисс отложено давление адсорбтива р (или концентрация с), по оси ординат - величина адсорбции а. Эта область адсорбции называется областью Генри: а = Гр, Г - коэффициент Генри.

И. Ленгмюром была предложена (1914-1918) теория мономолекулярной локализованной адсорбции (молекулы адсорбата не передвигаются по поверхности) при следующих допущениях: поверхность однородна, то есть все адсорбционные центры имеют одинаковое сродство к молекулам адсорбтива; молекулы адсорбата не взаимодействуют друг с другом. Уравнение Ленгмюра имеет вид: а = а = а макс bр/(1+bр) или р = а/b(а макс - а), где а - количество адсорбированного вещества, а макс - предельная величина адсорбции в плотном монослое, р - давление адсорбтива, b - адсорбционный коэффициент. Полимолекулярная, или многослойная, адсорбция, при которой молекулы пара, адсорбируясь, образуют плёнку толщиной в несколько монослоёв, описывается уравнением Брунауэра - Эммета - Теллера (уравнение БЭТ, 1938 год):

где р 0 - давление насыщенного пара при температуре адсорбции, С - константа. Уравнение БЭТ применяют для определения удельной поверхности адсорбентов.

В 1914 году М. Полани предложена потенциальная теория адсорбции, согласно которой вблизи поверхности адсорбента существует потенциальное адсорбционное поле, убывающее с расстоянием от поверхности; давление адсорбтива, равное вдали от поверхности р, вблизи неё возрастает и на некотором расстоянии достигает значения р 0 , при котором адсорбтив конденсируется.

Адсорбенты обычно разделяют на непористые (радиусы кривизны поверхностей которых весьма велики и стремятся к бесконечности) и пористые. Пористые адсорбенты содержат микро-, супермикро-, мезо- и макропоры (смотри Пористость). В макропорах адсорбция крайне мала, её обычно не учитывают при оценке адсорбционного свойств адсорбентов. Характерная особенность адсорбции в микро- и супермикропорах - повышение энергии адсорбции по сравнению с поглощением вещества на непористом адсорбенте той же химической природы. Этот эффект является результатом наложения полей поверхностных сил противоположных стенок пор. В микро- и супермикропорах адсорбция происходит объёмно, в мезопорах - по механизму послойного заполнения, завершаемого капиллярной конденсацией.

Для микропористых адсорбентов М. М. Дубинин разработал теорию объёмного заполнения микропор (ТОЗМ). Введя представление о функции распределения объёмов пор по значениям химического потенциала адсорбата в них, Дубинин и Л. В. Радушкевич получили (1947 год) уравнение изотермы адсорбции, которое записывается в виде: W/W 0 = ехр[-(A/βE 0) 2 ], где W и W 0 - текущая и предельная величины адсорбции пара в единице объёма, А - дифференциальная мольная работа адсорбции, А = RTln(p 0 /p), R - универсальная газовая постоянная, Т - абсолютная температура, Е 0 - характеристическая энергия адсорбции стандартного пара (обычно бензола или азота), β - коэффициент подобия, аппроксимируемый отношением парахоров адсорбируемого и стандартного веществ.

Уравнение Дубинина - Радушкевича применимо для описания изотерм адсорбции в интервале относительных равновесных давлений от 5?10 -4 до 0,4 на адсорбентах с однородной микропористой структурой, то есть адсорбентах, в которых отсутствуют супермикропоры. Так как в адсорбционной технике микропористые адсорбенты получили наибольшее распространение, ТОЗМ применяется не только в физико-химических исследованиях, но и в инженерных расчётах.

Кинетика и динамика адсорбции. Элементарный акт адсорбции осуществляется практически мгновенно. Поэтому временные зависимости адсорбции лимитируются в основном механизмом диффузии вещества к месту адсорбции. Диффузные процессы определяются концентрацией адсорбтива, температурой, химической природой и пористой структурой адсорбента, концентрацией других веществ в объёме и на поверхности. Адсорбция в порах протекает значительно медленнее, чем на открытой поверхности. Адсорбция из жидких растворов происходит с меньшей скоростью, чем из газовых смесей. Зависимость величины адсорбции от времени называют кинетической кривой адсорбции.

Кинетику адсорбции в потоке газа изучают, используя единичные гранулы адсорбента и слой толщиной в одну гранулу. На практике обычно применяют слои адсорбента, толщина которых существенно превышает слой в одно зерно, то есть изучают адсорбцию в динамических условиях. При изучении динамики адсорбции через слой адсорбента пропускают газовый или жидкостный поток, содержащий адсорбируемые вещества, и измеряют нарастание концентрации адсорбируемого вещества за слоем адсорбента как функцию времени. Появление за слоем поглощаемого вещества называется проскоком, время до проскока - временем защитного действия. Зависимость концентрации данного компонента за слоем от времени - выходная кривая, из анализа которой получают полную информацию об эффективности адсорбционного процесса.

Технологическое оформление адсорбционных процессов . Широко распространены установки с неподвижным слоем адсорбента, основным узлом которых являются адсорберы - полые колонны, заполненные адсорбентом. Газовый или жидкостный поток, содержащий адсорбируемые компоненты, пропускается через шихту (слой адсорбента) до проскока адсорбтива; затем поток направляется в другой адсорбер. Целевые компоненты, поглощённые шихтой, извлекаются путём регенерации адсорбента (нагреванием адсорбера, вытеснением водяным паром и другим). Высокой производительностью характеризуются адсорбционные установки с псевдоожиженным («кипящим») слоем адсорбента, в которых газовый поток поступает в адсорбер снизу, приводя адсорбент во взвешенное состояние, что сокращает время адсорбции и десорбции. Применяются установки с движущимся слоем адсорбента. В них адсорбент под действием силы тяжести медленно опускается, из нижней части адсорбер потоком воздуха направляется в вертикальную трубу, смонтированную параллельно адсорбционных колонн, и поднимает зёрна адсорбента в верхнюю часть колонны. Газовый поток, содержащий пары адсорбированных веществ, поступает в среднюю часть адсорбера и движется вверх к адсорбенту. В верхней части колонны непрерывно происходит адсорбция, в нижней - регенерация адсорбента. Широко используются так называемые короткоцикловые установки: при адсорбции газ подаётся в адсорбер под значительным давлением, десорбция происходит из-за сброса давления, затем вновь давление поднимают.

В качестве адсорбентов применяют вещества с развитой поверхностью: активированные угли, силикагели, оксид алюминия, цеолиты; из непористых адсорбентов - технический углерод (сажа) и высокодисперсный SiO 2 (аэросил). Смотри также Сорбенты.

Адсорбция в природе и технологии . Адсорбция играет важную роль во многих природных (например, обогащение почв, образование вторичных рудных месторождений) и биологических (функционирование клеточных мембран) процессах. Адсорбционные технологии широко применяют для очистки, осушки, разделения газовых и жидких смесей: очистки промышленных выбросов и сточных вод, в том числе выбросов атомных электростанций, детоксикации загрязнённых почв, кондиционирования питьевой воды, разделения нефтей, извлечения драгоценных металлов из растворов и пульп, получения обогащённого кислородом воздуха, очистки лекарственных препаратов. Адсорбенты используют как наполнители при производстве полимеров, носители в катализе, в хроматографии, а также в медицине для извлечения вредных веществ, попавших в желудочно-кишечный тракт организма (энтеросорбция) или для очистки крови (гемосорбция). Явление адсорбции используется при крашении тканей, в полиграфической, пищевой промышленностях, в радиоэлектронной технике и др.

Лит.: Брунауер С. Адсорбция газов и паров. М., 1948. Т. 1; Бур Я. де. Динамический характер адсорбции. М., 1962; Дубинин М. М. Адсорбция и пористость. М., 1976; он же. Современное состояние теории объемного заполнения микропор углеродных адсорбентов//Известия Академии Наук СССР. Сер. химическая. 1991. № 1; Кельцев Н. В. Основы адсорбционной техники. 2-е изд. М., 1984; Жуховицкий А. А., Шварцман Л. А. Физическая химия. 5-е изд. М., 2001.