Электрическая напряженность единицы измерения. Напряженность электрического поля. Принцип суперпозиции полей — Гипермаркет знаний. Принцип суперпозиции напряженностей электрических полей

Под электрическим напряжением понимают работу, совершаемую электрическим полем для перемещения заряда напряженностью в 1 Кл (кулон) из одной точки проводника в другую.

Как возникает напряжение?

Все вещества состоят из атомов, представляющих собой положительно заряженное ядро, вокруг которого с большой скоростью кружатся более мелкие отрицательные электроны. В общем случае атомы нейтральны, так как количество электронов совпадает с числом протонов в ядре.

Однако если некоторое количество электронов отнять из атомов, то они будут стремиться притянуть такое же их количество, формируя вокруг себя плюсовое поле. Если же добавить электронов, то возникнет их избыток, и отрицательное поле. Формируются потенциалы – положительный и отрицательный.

При их взаимодействии возникнет взаимное притяжение.

Чем больше будет величина различия – разность потенциалов – тем сильнее электроны из материала с их избыточным содержанием будут перетягиваться к материалу с их недостатком. Тем сильнее будет электрическое поле и его напряжение.

Если соединить потенциалы с различными зарядами проводников, то возникнет электрический – направленное движение носителей заряда, стремящееся устранить разницу потенциалов. Для перемещения по проводнику зарядов силы электрического поля совершают работу, которая и характеризуется понятием электрического напряжения.

В чем измеряется

Температуры;

Виды напряжения

Постоянное напряжение

Напряжение в электрической сети постоянно, когда с одной ее стороны всегда положительный потенциал, а с другой – отрицательный. Электрический в этом случае имеет одно направление и является постоянным.

Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах.

При подключении нагрузки в цепь постоянного тока важно не перепутать контакты, иначе устройство может выйти из строя. Классическим примером источника постоянного напряжения являются батарейки. Применяют сети , когда не требуется передавать энергию на большие расстояния: во всех видах транспорта – от мотоциклов до космических аппаратов, в военной технике, электроэнергетике и телекоммуникациях, при аварийном электрообеспечении, в промышленности (электролиз, выплавка в дуговых электропечах и т.д.).

Переменное напряжение

Если периодически менять полярность потенциалов, либо перемещать их в пространстве, то и электрический устремится в обратном направлении. Количество таких изменений направления за определенное время показывает характеристика, называемая частотой. Например, стандартные 50 означают, что полярность напряжения в сети меняется за секунду 50 раз.


Напряжение в электрических сетях переменного тока является временной функцией.

Чаще всего используется закон синусоидальных колебаний.

Так получается за счет того, что возникает в катушке асинхронных двигателей за счет вращения вокруг нее электромагнита. Если развернуть вращение по времени, то получается синусоида.

Состоит из четырех проводов – трех фазных и одного нулевого. напряжение между проводами нулевым и фазным равно 220 В и называется фазным. Между фазными напряжение также существует, называется линейным и равно 380 В (разность потенциалов между двумя фазными проводами). В зависимости от вида подключения в трехфазной сети можно получить или фазное напряжение, или линейное.

напряжённость электри́ческого по́ля

(Е ), основная силовая характеристика электрического поля, равная отношению силы, действующей на точечный электрический заряд в данной точке пространства, к величине заряда.

НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

НАПРЯЖЕННОСТЬ ЭЛЕКТРИ́ЧЕСКОГО ПО́ЛЯ (Е ), основная силовая характеристика электрического поля (см. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ) , определяемая силой (F), действующей на точечный (единичный) положительный электрический заряд (см. ЭЛЕКТРИЧЕСКИЙ ЗАРЯД) (Q o), помещенный в данную точку поля. Заряд должен быть малым, чтобы не изменять ни величины, ни расположения тех зарядов, которые порождают исследуемое поле (т. е. заряд, не искажающий поля, которое с его помощью изучается, при этом собственным электрическим полем точечного заряда пренебрегают).
Е = F/ Q o .
В общем случае напряженность поля Е = F/Q. Т.е. напряженность в данной точке пространства есть отношение силы, действующей на заряд, помещенный в эту точку к величине этого заряда.
Единица измерения напряженности электростатического поля - 1Н/Кл =1В/м.
Напряженность 1Н/Кл - это напряженность такого поля, которое на точечный заряд 1 Кл действует силой 1 Н, эту единицу в системе СИ называют В/м.
Напряженность электрического поля - векторная величина. Направление вектора напряженности Е совпадает с направлением кулоновской (см. Кулона закон (см. КУЛОНА ЗАКОН) ) силы, действующей на точечный положительный заряд, помещенный в данную точку поля.
Если поле создается положительным зарядом, то вектор напряженности такого поля направлен от заряда вдоль радиуса-вектора, если поле создается отрицательным зарядом, то вектор напряженности поля Е направлен к заряду.
Графической характеристикой поля являются силовые линии (см. СИЛОВЫЕ ЛИНИИ) напряженности электрического поля, касательные к которым в каждой точке совпадают с направлением вектора напряженности.
Для электростатического поля напряженность электрического поля может быть представлена как градиент (см. ГРАДИЕНТ) электрического потенциала (см. ПОТЕНЦИАЛ (в физике)) j;
Е = - gradj.
Вектор напряженности электрического поля направлен в сторону убывания потенциала.
В вакууме напряженность электрического поля удовлетворяет принципу суперпозиции, согласно которому полная напряженность поля в точке равна геометрической сумме напряженностей полей, создаваемых отдельными заряженными частицами.


Энциклопедический словарь . 2009 .

Смотреть что такое "напряжённость электрического поля" в других словарях:

    Размерность LMT−3I−1 Единицы измерения СИ В/м Примечан … Википедия

    - (E), векторная характеристика электрического поля, равная отношению силы, действующей на точечный электрический заряд в данной точке пространства, к величине заряда. В СИ измеряется в В/м … Современная энциклопедия

    напряжённость электрического поля - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN intensity of electric fieldelectric field intensitystrength of… …

    Напряжённость электрического поля - Напряженность электрического поля НАПРЯЖЁННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ (E), векторная характеристика электрического поля, равная отношению силы, действующей на точечный электрический заряд в данной точке пространства, к величине заряда. В СИ… … Иллюстрированный энциклопедический словарь

    напряжённость электрического поля - elektrinio lauko stipris statusas T sritis automatika atitikmenys: angl. electric field intensity; electric field strength vok. elektrische Feldstärke, f rus. напряжённость электрического поля, f pranc. intensité du champ électrique, f … Automatikos terminų žodynas

    напряжённость электрического поля - elektrinio lauko stipris statusas T sritis fizika atitikmenys: angl. electric field strength vok. elektrische Feldstärke, f rus. напряжённость электрического поля, f pranc. intensité du champ électrique, f … Fizikos terminų žodynas - (t), векторная величина, осн. силовая характеристика электрич. поля, равная отношению силы, действующей to точечный электрич. заряд в данной точке пространства, к величине заряда. Единица СИ В/м … Естествознание. Энциклопедический словарь

    пробивная напряжённость электрического поля - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN disruptive electric strengthdisruptive electric field strength … Справочник технического переводчика

Напряженность электрического поля может иметь значительную важность при использовании конденсаторов, а также иных деталей для схем. Почему так? Давайте рассмотрим данное понятие с точки зрения физики.

Зачем было введено само понятие напряженности электрического поля

Оно характеризирует особый вид материи, которая существует около любого электрического заряда и проявляет себя во влиянии на другие подобные частицы. Напряженность - это характеристика данного поля. Принимать во внимание данное понятие необходимо из-за того, что существует влияние на электронные компоненты любой схемы, которая есть в любой электротехнике. А при игнорировании этого аспекта машины, в которых они есть, будут очень быстро выходить из строя, возможно даже, что мгновенно - при первом же запуске. Как напряженность электрического поля рассматривается современной наукой?

Что такое напряженность с точки зрения физики

Данному понятию было уделено много внимания - ещё бы, ведь от понимания данных процессов сейчас очень сильно зависит мощь нашей цивилизации. Под ней понимают векторную величину, которую используют, чтобы охарактеризовать электрическое поле в одной точке. Она численно равняется отношению силы, что воздействует на недвижимый точечный заряд, который рассматривается, к его величине:

Н=С/ВЗ, где:

  1. Н - напряженность.
  2. С - сила.
  3. ВЗ - величина заряда, что рассматривается.

Вот как определить напряженность электрического поля. И вот почему её могут иногда называть его же силовой характеристикой. Что же выступает единственным отличием? От вектора силы, который действует на заряженную частицу, данный случай отличается наличием постоянного множителя. А что можно сказать про его величину?

Значение вектора в каждой точке пространства

Необходимо учитывать, что данная величина меняется вместе с изменением координат. Формально все точки векторного объема можно выразить такой записью: Е = Е (х, у, z, t). Она представляет напряженность электрического поля в виде функции пространственных координат. А теперь на них необходимо наложить векторы магнитной индукции. В результате можно получить электромагнитное поле, которое вместе со своими законами будет представлять предмет электродинамики. В чем измеряется напряженность данного объекта? Для этого используют показатель вольт на метр или ньютон на кулон (запись соответственно В/м или Н/Кл).

Напряжённость электрического поля в классической электродинамике

Она признана одной из основных фундаментальных величин. Сопоставимыми по важности можно назвать вектор магнитной индукции и электрический заряд. В некоторых случаях подобную значительность могут приобретать потенциалы электромагнитного поля. Более того, если соединить их вместе, то можно получить значение, которое покажет возможность влияния на другие объекты. Оно называется электромагнитным потенциалом. Существуют и другие понятия. Электрический ток, его плотность, вектор поляризации, напряженность магнитного поля - все они достаточно значимые и важные, но считаются только вспомогательными величинами. Давайте устроим краткий обзор основных контекстов, которые имеются в классической электродинамике относительно напряженности электрического поля.

Сила действия на заряженные частицы

Для выражения общего показателя воздействия магнитного поля использую формулу Лоренца:

С = ЭЗЧ*ВС+ЭЗЧ*Ск*^ВМИ.

С - сила воздействия магнитного поля на заряженную частицу.

ЭЗЧ - электрический заряд одной частицы.

ВМИ - вектор магнитной индукции.

Ск - скорость движения частицы.

*^ - векторное произведение.

Если разобраться в формуле, то можно увидеть, что она полностью согласуется с ранее данным определением, чем является напряженность электрического поля. Но само уравнение обобщено, поскольку в него включено действие на заряженную частицу со стороны магнитного поля при движении оной. Также предполагается, что объект рассмотрения является точечным. Формула позволяет рассчитывать силы, которыми действует электромагнитное поле на тело любой формы, в котором произвольное распределение зарядов и токов. Необходимо только разбить сложный объект на маленькие части, каждая из них может считаться точкой, и тогда к ней становится возможным применение формулы.

Что можно сказать про остальные подсчёты

Другие уравнения, которые применяются при расчетё электромагнитных сил, считают следствиями формулы Лоренца. Также их называют частными случаями её применения. Хотя для практического применения даже в самых простых задачах всё же необходимо иметь ещё небольшой багаж знаний, о которых сейчас и будет рассказано.

Электростатика

Занимается частными случаями, когда заряженные тела являются неподвижными, или их скорость передвижения настолько мала, что их таковыми считают. Как же посчитать напряженность электрического поля в данном случае? В этом нам поможет скалярный потенциал:

НЭП = -∆СП.

НЭП - напряженность электрического поля.

СП - скалярный потенциал.

Верно и обратное. Полученное значение называется электростатическим потенциалом. Также подобный подход упрощает уравнение Максвелла, и оно превращается в формуле Пуассона. Для частного случая областей, которые свободны от заряженных частиц, используют подсчёты по методу Лапласа. Обратите внимание - все уравнения линейные, а соответственно, к ним применяется принцип суперпозиции. Для этого следует найти поле только одного точечного единичного заряда. Затем следует обсчитать напряженность или потенциал поля, что создаются их распределением. Знаете, как называют полученный результат? Наверняка нет. А имя ему - напряженность электрического поля точечного заряда.

Уравнения Максвелла

Они вместе с формулой силы Лоренца составляют теоретический фундамент классической электродинамики. Традиционная форма представлена. Поскольку описывать каждое из них - это долго, то мною они будут представлены в виде картинки. Считается, что этих четырёх уравнений и формулы силы Лоренца достаточно, чтобы полностью описать классическую (только её, а не квантовую) электродинамику. Но что делать с практикой? Для решения реальных задач может потребоваться ещё уравнение, которое описывает движение материальных частиц (в классической механике в их роли выступают законы Ньютона). Также будет нужной информация о конкретных свойствах сред и физических тел, которые рассматриваются (их упругость, электропроводность, поляризация и подобное). Для решения задач могут применяться и другие силы, что не входят в рамки электродинамики (как то гравитация), но которые бывают нужными, чтобы построить замкнутую систему уравнений или решить конкретную проблему.

Заключение

Что же, подводя итог, можно сказать, что напряженность электрического поля была рассмотрена довольно полно, как в целом, так и некоторые частные случаи. Данных, представленных в рамках статьи, должно с лихвой хватить, чтобы рассчитывать параметры для своих будущих конструкций. Про графическое изображение можно сказать, что векторы напряженности электрического поля изображаются с помощью силовых линий, которые считаются касательными к каждой точке. Этот способ описания впервые был введён Фарадеем. На этом про напряженность электрического поля автор заканчивает и благодарит вас за уделенное внимание.

«Физика - 10 класс»

При решении задач с использованием понятия напряжённости электрического поля нужно прежде всего знать формулы (14.8) и (14.9), определяющие силу, действующую на заряд со стороны электрического поля, и напряжённость поля точечного заряда. Если поле создаётся несколькими зарядами, то для расчёта напряжённости в данной точке надо сделать рисунок и затем определить напряжённость как геометрическую сумму напряжённостей полей.


Задача 1.


Два одинаковых положительных точечных заряда расположены на расстоянии r друг от друга в вакууме. Определите напряжённость электрического поля в точке, расположенной на одинаковом расстоянии r от этих зарядов.


Р е ш е н и е.


Согласно принципу суперпозиции полей искомая напряжённость равна геометрической сумме напряжённостей полей, созданных каждым из зарядов (рис. 14.17): = 1 + 2 .

Модули напряжённостей полей зарядов равны:

Диагональ параллелограмма, построенного на векторах 1 и 2 , есть напряжённость результирующего поля, модуль которой равен:

Задача 2.


Проводящая сфера радиусом R = 0,2 м, несущая заряд q = 1,8 10 -4 Кл, находится в вакууме. Определите: 1) модуль напряжённости электрического поля на её поверхности; 2) модуль напряжённости 1 электрического поля в точке, отстоящей на расстоянии r 1 = 10 м от центра сферы; 3) модуль напряжённости 0 в центре сферы.


Р е ш е н и е.


Электрическое поле заряженной сферы вне её совпадает с полем точечного заряда. Поэтому

Следовательно,


Задача 3.


В однородное электрическое поле напряжённостью Е 0 = 3 кН/Кл внесли точечный заряд q = 4 10 -10 Кл. Определите напряжённость электрического поля в точке А, находящейся на расстоянии r = 3 см от точечного заряда. Отрезок, соединяющий заряд и точку А, перпендикулярен силовым линиям однородного электрического поля.


Р е ш е н и е.


Согласно принципу суперпозиции напряжённость электрического поля в точке А равна векторной сумме напряжённостей однородного поля 0 и поля 1 , созданного в этой точке внесённым электрическим зарядом. На рисунке 14.18 показаны эти два вектора и их сумма. По условию задачи векторы 0 и 1 взаимно перпендикулярны. Напряжённость поля точечного заряда

Тогда напряжённость электрического поля в точке А равна:


Задача 4.


В вершинах равностороннего треугольника со стороной а = 3 см находятся три точечных заряда q 1 = q 2 = 10 -9 Кл, q 3 = -2 10 -9 Кл. Определите напряжённость электрического поля в центре треугольника в точке О.



Согласно принципу суперпозиции полей напряжённость поля в точке О равна векторной сумме напряжённостей полей, созданных каждым зарядом в отдельности: 0 = 1 + 2 + 3 , причём где

На рисунке 14.19 показаны векторы напряжённостей 1 , 2 , 3 . Сначала сложим векторы 1 и 2 . Как видно из рисунка, угол между этими векторами равен 120°. Следовательно, модуль суммарного вектора равен модулю l 1 l и направлен в ту же сторону, что и вектор 3 .

>>Физика: Напряженность электрического поля. Принцип суперпозиции полей

Недостаточно утверждать, что электрическое поле существует. Надо ввести количественную характеристику поля. После этого электрические поля можно будет сравнивать друг с другом и продолжать изучать их свойства.
Электрическое поле обнаруживается по силам, действующим на заряд. Можно утверждать, что мы знаем о поле все, что нам нужно, если будем знать силу, действующую на любой заряд в любой точке поля.
Поэтому надо ввести такую характеристику поля, знание которой позволит определить эту силу.
Если поочередно помещать в одну и ту же точку поля небольшие заряженные тела и измерять силы, то обнаружится, что сила, действующая на заряд со стороны поля, прямо пропорциональна этому заряду. Действительно, пусть поле создается точечным зарядомq 1 . Согласно закону Кулона (14.2) на заряд q 2 действует сила, пропорциональная заряду q 2 . Поэтому отношение силы, действующей на помещаемый в данную точку поля заряд, к этому заряду для каждой точки поля не зависит от заряда и может рассматриваться как характеристика поля. Эту характеристику называютнапряженностью электрического поля. Подобно силе, напряженность поля – векторная величина ; ее обозначают буквой . Если помещенный в поле заряд обозначить через q вместо q 2 , то напряженность будет равна:

Напряженность поля в данной точке равна отношению силы, с которой поле действует на точечный заряд, помещенный в эту точку, к этому заряду.
Отсюда сила, действующая на заряд q со стороны электрического поля, равна:

Направление вектора совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующей на отрицательный заряд.
Напряженность поля точечного заряда. Найдем напряженность электрического поля, создаваемого точечным зарядом q 0 . По закону Кулона этот заряд будет действовать на положительный заряд q с силой, равной

Модуль напряженности поля точечного заряда q 0 на расстоянии r от него равен:

Вектор напряженности в любой точке электрического поля направлен вдоль прямой, соединяющей эту точку и заряд (рис.14.7 ) и совпадает с силой, действующей на точечный положительный заряд, помещенный в данную точку.

Принцип суперпозиции полей . Если на тело действует несколько сил, то согласно законам механики результирующая сила равна геометрической сумме этих сил:

На электрические заряды действуют силы со стороны электрического поля. Если при наложении полей от нескольких зарядов эти поля не оказывают никакого влияния друг на друга, то результирующая сила со стороны всех полей должна быть равна геометрической сумме сил со стороны каждого поля. Опыт показывает, что именно так и происходит на самом деле. Это означает, что напряженности полей складываются геометрически.
если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых и т. д., то результирующая напряженность поля в этой точке равна сумме напряженностей этих полей:

причем напряженность поля, создаваемая отдельным зарядом, определяется так, как будто других зарядов, создающих поле, не существует.
Благодаря принципу суперпозиции для нахождения напряженности поля системы заряженных частиц в любой точке достаточно знать выражение (14.9) для напряженности поля точечного заряда. На рисунке 14.8 показано, как определяется напряженность поля в точке A , созданная двумя точечными зарядами q 1 и q 2 , q 1 >q 2

Введение электрического поля позволяет разделить задачу вычисления сил взаимодействия заряженных частиц на две части. Сначала вычисляют напряженность поля, созданного зарядами, а затем по известной напряженности определяют силы. Такое разделение задачи на части обычно облегчает расчеты сил.

???
1. Что называется напряженностью электрического поля?
2. Чему равна напряженность поля точечного заряда?
3. Как направлена напряженность поля зарядаq 0 , если q 0 >0 ? если q 0 <0 ?
4. Как формулируется принцип суперпозиции полей?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,