Равнодействующая сила. Условия равновесия тел Когда равнодействующая сила равна нулю тело может

Статикой называется раздел механики, изучающий условия равновесия тел.

Из второго закона Ньютона следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс .

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю .

На рис. 1.14.1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C ), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке.

Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил .

Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы .

Произведение модуля силы на плечо d называется моментом силы M . Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки (рис. 1.14.2).

Правило моментов : тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

В Международной системе единиц (СИ) моменты сил измеряются в Н ьютон метрах (Н∙м ) .

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов сил.

Катящееся по горизонтальной поверхности колесо – пример безразличного равновесия (рис. 1.14.3). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают состояния устойчивого и неустойчивого равновесия.

Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние.

При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия.

Шар, лежащий на плоской горизонтальной поверхности, находится в состоянии безразличного равновесия. Шар, находящийся в верхней точке сферического выступа, – пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 1.14.4).

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси – состояние равновесия неустойчиво (рис. 1.14.5).

Особым случаем является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры , т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается. Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза (рис. 1.14.6), которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра высотой 55 м и радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м.

Вертикальная линия, проведенная через центр масс башни, пересекает основание приблизительно в 2,3 м от его центра. Таким образом, башня находится в состоянии равновесия. Равновесие нарушится и башня упадет, когда отклонение ее вершины от вертикали достигнет 14 м. По-видимому, это произойдет очень нескоро.

Первый закон Ньютона говорит нам о том, что в инерциальных системах отсчета тела могут изменять скорость только, если на них оказывают воздействие другие тела. При помощи силы ($\overline{F}$) выражают взаимное действие тел друг на друга. Сила способна изменить величину и направление скорости тела. $\overline{F}$ - это векторная величина, то есть она обладает модулем (величиной) и направлением.

Определение и формула равнодействующей всех сил

В классической динамике основным законом, с помощью которого находят направление и модуль равнодействующей силы является второй закон Ньютона:

\[\overline{F}=m\overline{a}\ \left(1\right),\]

где $m$ - масса тела, на которое действует сила $\overline{F}$; $\overline{a}$ - ускорение, которое сила $\overline{F}$ сообщает рассматриваемому телу. Смысл второго закона Ньютона заключается в том, что силы, которые действуют на тело, определяют изменение скорости тела, а не просто его скорость. Следует знать, что второй закон Ньютона выполняется для инерциальных систем отсчета.

На тело могут действовать не одна, а некоторая совокупность сил. Суммарное действие этих сил характеризуют, используя понятие равнодействующей силы. Пусть на тело оказывают действие в один и тот же момент времени несколько сил. Ускорение тела при этом равно сумме векторов ускорений, которые возникли бы при наличии каждой силы отдельно. Силы, которые оказывают действие на тело, следует суммировать в соответствии с правилом сложения векторов. Равнодействующей силой ($\overline{F}$) называют векторную сумму всех сил, которые оказывают действие на тело в рассматриваемый момент времени:

\[\overline{F}={\overline{F}}_1+{\overline{F}}_2+\dots +{\overline{F}}_N=\sum\limits^N_{i=1}{{\overline{F}}_i}\ \left(2\right).\]

Формула (2) - это формула равнодействующей всех сил, приложенных к телу. Равнодействующая сила является искусственной величиной, которую вводят для удобства проведения вычислений. Равнодействующая сила направлена как вектор ускорения тела.

Основной закон динамики поступательного движения при наличии нескольких сил

Если на тело действуют несколько сил, тогда второй закон Ньютона записывают как:

\[\sum\limits^N_{i=1}{{\overline{F}}_i}=m\overline{a}\left(3\right).\]

$\overline{F}=0$, если силы, приложенные к телу, взаимно компенсируют друг друга. Тогда в инерциальной системе отсчета скорость движения тела постоянна.

При изображении сил, действующих на тело, на рисунке, в случае равноускоренного движения, равнодействующую силу, изображают длиннее, чем сумму сил, которые противоположно ей направлены. Если тело перемещается с постоянной скоростью или покоится, длины векторов сил (равнодействующей и сумме остальных сил), одинаковы и направлены они в противоположные стороны.

Когда находят равнодействующую сил, на рисунке изображают все учитываемые в задаче силы. Суммируют эти силы в соответствии с правилами сложения векторов.

Примеры задач на равнодействующую сил

Пример 1

Задание. На материальную точку действуют две силы, направленные под углом $\alpha =60{}^\circ $ друг к другу. Чему равна равнодействующая этих сил, если $F_1=20\ $Н; $F_2=10\ $Н?

Решение. Сделаем рисунок.

Силы на рис. 1 складываем по правилу параллелограмма. Длину равнодействующей силы $\overline{F}$ можно найти, используя теорему косинусов:

Вычислим модуль равнодействующей силы:

Ответ. $F=26,5$ Н

Пример 2

Задание. На материальную точку действуют силы (рис.2). Какова равнодействующая этих сил?

Решение. Равнодействующая сил, приложенных к точке (рис.2) равна:

\[\overline{F}={\overline{F}}_1+{\overline{F}}_2+{\overline{F}}_3+{\overline{F}}_4\left(2.1\right).\]

Найдем равнодействующую сил ${\overline{F}}_1$ и ${\overline{F}}_2$. Эти силы направлены вдоль одной прямой, но в противоположные стороны, следовательно:

Так как $F_1>F_2$, то сила ${\overline{F}}_{12}$ направлена в туже сторону, что и сила ${\overline{F}}_1$.

Найдем равнодействующую сил ${\overline{F}}_3$ и ${\overline{F}}_4$. Данные силы направлены вдоль одной вертикальной прямой (рис.1), значит:

Направление силы ${\overline{F}}_{34}$ совпадает с направлением вектора ${\overline{F}}_3$, так как ${\overline{F}}_3>{\overline{F}}_4$.

Равнодействующую, которая действует на материальную точку, найдем как:

\[\overline{F}={\overline{F}}_{12}+{\overline{F}}_{34}\left(2.2\right).\]

Силы ${\overline{F}}_{12}$ и ${\overline{F}}_{34}$ взаимно перпендикулярны. Найдем длину вектора $\overline{F}$ по теореме Пифагора:

Игорь Бабин (спб) 14.05.2012 17:33

в условии написано,что нужно найти вес тела.

а в решении модуль силы тяжести.

Как вес может измеряться в Ньютонах.

В условии ошибка(

Алексей (Санкт-Петербург)

Добрый день!

Вы путаете понятия массы и веса. Весом тела называется сила (а потому вес измеряется в Ньютонах), с которой тело давит на опору или растягивает подвес. Как следует из определения, эта сила приложена даже не к телу, а к опоре. Невесомость - это состояние, когда у тела пропадает не масса, а вес, то есть тело перестает давить на другие тела.

Согласен, в решении была допущена некоторая вольность в определениях, сейчас она поправлена.

Юрий Шойтов (Курск) 26.06.2012 21:20

Понятие "вес тела" введен в учебную физику крайне неудачно. Если в бытовом понятии вес обозначает массу то в школьной физике, как вы правильно заметили весом тела называется сила (а потому вес измеряется в Ньютонах), с которой тело давит на опору или растягивает подвес. Заметим, что речь идет об одной опоре и об одной нити. Если опор или нитей несколько несколько, понятие веса исчезает.

Привожу пример. Пусть в жидкости на нити подвешено тело. Оно растягивает нить и давит на жидкость с силой равной минус сила Архимеда. Почему же, говоря о весе тела в жидкости, мы не складываем эти силы, как Вы делаете в своем решении?

Я зарегистрировался на Вашем сайте, но не заметил, что же изменилось в нашем общении. Прошу извинить мою тупость, но я, будучи человеком старым, недостаточно свободно ориентируюсь на сайте.

Алексей (Санкт-Петербург)

Добрый день!

Действительно, понятие веса тела весьма расплывчато, когда тело имеет несколько опор. Обычно вес в этом случае определяют как сумму взаимодействий со всеми опорами. При этом воздействие на газообразные и жидкие среды, как правило, исключается. Это как раз подпадает под описанный Вами пример, с подвешенным в воде грузиком.

Здесь сразу вспоминается детская задачка: "Что весит больше: килограмм пуха или килограмм свинца?" Если решать эту задачу по-честному, то нужно несомненно учитывать силу Архимеда. А под весом скорее всего мы будем понимать то, что нам будут показывать весы, то есть силу, с которой пух и свинец давят, скажем, на чашку весов. То есть здесь сила взаимодействие с воздухом как бы из понятия веса исключается.

С другой стороны, если считать, что мы откачали весь воздух и кладем на весы тело, к которому привязана веревочка. То сила тяжести будет уравновешиваться суммой силы реакции опоры и силой натяжения нити. Если мы понимаем вес как силу действия на опоры, препятствующие падению, то вес тут будет равен этой сумме силы растяжения нити и силы давления на чашку весов, то есть совпадать по величине с силой тяжести. Опять возникает вопрос: чем нитка лучше или хуже силы Архимеда?

В целом тут можно договориться до того, что понятие веса имеет смысл только в пустом пространстве, где есть только одна опора и тело. Как тут быть, это вопрос терминологии, которая, к сожалению, у каждого здесь своя, поскольку не столь уж это и важный вопрос:) И если силой Архимеда в воздухе во всех обычных случаях можно пренебречь, а значит, на величину веса она особо повлиять не может, то для тела в жидкости это уже критично.

Если уж быть совсем честным, то разделение сил на виды весьма условно. Представим себе ящик, который тащат по горизонтальной поверхности. Обычно говорят, что на ящик действуют две силы со стороны поверхности: сила реакции опоры, направленная вертикально, и сила трения, направленная горизонтально. Но ведь это две силы, действующие между одними и теми же телами, почему же мы просто не рисуем одну силу, являющуюся их векторной суммой (так, кстати, иногда и делается). Тут, это, наверное, вопрос удобства:)

Так что я немного в замешательстве, что делать с данной конкретной задачей. Проще всего, наверное, переформулировать ее и задавать вопрос про величину силы тяжести.

Не переживайте, все в порядке. При регистрации Вы должны были указать e-mail. Если теперь зайти на сайт под своим аккаунтом, то при попытке оставить комментарий в окне "Ваш e-mail" должен сразу появляться тот самый адрес. После этого система будет автоматически подписывать Ваши сообщения.

Законы Ньютона - математическая абстракция. В реальности причиной движения или покоя тел, а также их деформации, выступают сразу несколько сил. Поэтому важным дополнениям к законам механики будет введение понятия равнодействующей силы и его применение.

О причинах изменений

Классическая механика разделена на два раздела - кинематику, при помощи уравнений описывающую траекторию движения тел, и динамику, которая разбирается с причинами изменения положения объектов или самих объектов.

Причиной изменений выступает некоторая сила, которая есть мера действия на тело других тел или силовых полей (например, электромагнитное поле или гравитация). К примеру, сила упругости вызывает деформацию тела, сила тяжести - падение тел на Землю.

Сила - это векторная величина, то есть, ее действие - направленное. Модуль силы в общем случае пропорционален некоему коэффициенту (для деформации пружины - это ее жесткость), а также параметрам действия (масса, заряд).

Например, в случае кулоновской силы - это величина обоих зарядов, взятых по модулю, квадрат расстояние между зарядами и коэффициент k, в системе СИ определяемый выражением: $k = {1 \over 4 \pi \epsilon}$, где $\epsilon$ – диэлектрическая постоянная.

Сложение сил

В случае, когда на тело действует n сил, говорят о равнодействующей силе, а формула второго закона Ньютона принимает вид:

$m\vec a = \sum\limits_{i=1}^n \vec F_i$.

Рис. 1. Равнодействующая сил.

Поскольку F - векторная величина, сумма сил называется геометрической (или векторной). Такое сложение выполняется по правилу треугольника или параллелограмма, либо по компонентам. Поясним каждый метод на примере. Для этого запишем формулу равнодействующей силы в общем виде:

$F = \sum\limits_{i=1}^n \vec F_i$

А силу $F_i$ представим в виде:

$F = (F_{xi}, F_{yi}, F_{zi})$

Тогда суммой двух сил будет новый вектор $F_{ab} = (F_{xb} + F_{xa}, F_{yb} + F_{ya}, F_{zb} + F_{za})$.

Рис. 2. Покомпонентное сложение векторов.

Абсолютное значение равнодействующей можно рассчитать так:

$F = \sqrt{(F_{xb} + F_{xa})^2 + (F_{yb} + F_{ya})^2 + (F_{zb} + F_{za})^2}$

Теперь дадим строгое определение: равнодействующая сила есть векторная сумма всех сил, оказывающих влияние на тело.

Разберем правила треугольника и параллелограмма. Графически это выглядит так:

Рис. 3. Правило треугольника и параллелограмма.

Внешне они кажутся различными, но когда доходит до вычислений, сводятся к нахождению третьей стороны треугольника (или, что тоже самое, диагонали параллелограмма) по теореме косинусов.

Если сил больше двух, иногда удобней пользоваться правилом многоугольника. По своей сути - это всё тот же треугольник, только повторенный на одном рисунке некоторое количество раз. В случае, если по итогу контур получился замкнутым, общее действие сил равно нулю и тело покоится.

Задачи

  • На ящик, размещенный в центре декартовой прямоугольной системы координат, действуют две силы: $F_1 = (5, 0)$ и $F_2 = (3, 3)$. Рассчитать равнодействующую двумя методами: по правилу треугольника и при помощи покомпонентного сложения векторов.

Решение

Равнодействующей силой будет векторная сумма $F_1$ и $F_2$.

Поэтому запишем:

$\vec F = \vec F_1 + \vec F_2 = (5+3, 0+3) = (8, 3)$
Абсолютное значение равнодействующей силы:

$F = \sqrt{8^2 + 3^2} = \sqrt{64 + 9} = 8,5 Н$

Теперь получим тоже значение при помощи правила треугольника. Для этого сначала найдем абсолютные значения $F_1$ и $F_2$, а также угол между ними.

$F_1 = \sqrt{5^2 + 0^2} = 5 Н$

$F_2 = \sqrt{3^2 + 3^2} = 4,2 Н$

Угол между ними – 45˚, так как первая сила параллельна оси Оx, а вторая делит первую координатную плоскость пополам, то есть является биссектрисой прямоугольного угла.

Теперь, разместив вектора по правилу треугольника, рассчитаем по теореме косинусов равнодействующую:

$F = \sqrt{F_1^2 + F_2^2 - 2F_1F_2 cos135} = \sqrt{F_1^2 + F_2^2 + 2F_1F_2 sin45} = \sqrt{25 + 18 + 2 \cdot 5 \cdot 4,2 \cdot sin45} = 8,5 Н$

  • На машину действуют три силы: $F_1 = (-5, 0)$, $F_2 = (-2, 0)$, $F_1 = (7,0)$. Какова их равнодействующая?

Решение

Достаточно сложить иксовые компоненты векторов:

$F = -5 – 2 + 7 = 0$

Что мы узнали?

В ходе урока было введено понятие равнодействующей сил и рассмотрены различные методы ее расчета, а также введена запись второго закона Ньютона для общего случая, когда количество сил неограниченно.

Тест по теме

Оценка доклада

Средняя оценка: 4.7 . Всего получено оценок: 175.

Систематизация знаний о равнодействующей всех сил, приложенных к телу; о сложении векторов.

  • Интерпретация первого закона Ньютона относительно понятия равнодействующая сил.
  • Восприятие данной формулировки закона.
  • Применение полученных знаний к знакомой и новой ситуации при решении физических задач.
  • Задачи урока (для учителя):

    Образовательные:

    • Уточнить и расширить знания о равнодействующей силе и способах ее нахождения.
    • Сформировать умения применять понятие равнодействующей силы к обоснованию законов движения (законов Ньютона)
    • Выявить уровень усвоения темы;
    • Продолжить формирование навыков самоанализа ситуации и самоконтроля.

    Воспитательные:

    • Содействовать формированию мировоззренческой идеи познаваемости явлений и свойств окружающего мира;
    • Подчеркнуть значение модулирования в познаваемости материи;
    • Обратить внимание на формирование общечеловеческих качеств:
      a) деловитость,
      b) самостоятельность;
      c) аккуратность;
      d) дисциплинированность;
      e) ответственное отношение к учебе.

    Развивающие:

  • Осуществлять умственное развитие детей;
  • Работать над формированием умений сравнивать явления, делать выводы, обобщения;
  • Учить:
    a) выделять признаки сходства в описании явлений,
    b) анализировать ситуацию
    c) делать логические умозаключения на основе этого анализа и имеющихся знаний;
  • Проверить уровень самостоятельного мышления обучающегося по применению имеющихся знаний в различных ситуациях.
  • Оборудование и демонстрации.

    1. Иллюстрации:
      эскиз к басне И.А. Крылова “Лебедь, рак и щука”,
      эскиз картины И. Репина “Бурлаки на Волге”,
      к задаче №108 “Репка” - “Задачник Физика” Г. Остера.
    2. Стрелки цветные на полиэтиленовой основе.
    3. Копировальная бумага.
    4. Кодоскоп и пленка с решением двух задач самостоятельной работы.
    5. Шаталов “Опорные конспекты”.
    6. Портрет Фарадея.

    Оформление доски:

    “Если вы в этом
    разберетесь как следует,
    вы лучше сможете следить
    за ходом моей мысли
    при изложении дальнейшего”.
    М.Фарадей

    Ход урока

    1. Организационный момент

    Проверка:

    • отсутствующих;
    • наличия дневников, тетрадей, ручек, линеек, карандашей;

    Оценка внешнего вида.

    2. Повторение

    В ходе беседы на уроке повторяем:

    • I закон Ньютона.
    • Сила – причина ускорения.
    • II закон Ньютона.
    • Сложение векторов правилу треугольника и параллелограмма.

    3. Основной материал

    Проблема урока.

    “Однажды Лебедь, Рак да Щука
    Везти с поклажей воз взялись
    И вместе, трое, все в него впряглись;
    Из кожи лезут вон,
    А возу все нет ходу!
    Поклажа бы для них казалась и легка:
    Да Лебедь рвется в облака,
    Рак пятится назад,
    А Щука тянет в воду!
    Кто виноват из них, кто прав –
    Судить не нам;
    Да только воз и ныне там!”

    (И.А.Крылов)

    В басне выражено скептическое отношение к Александру I, она высмеивает неурядицы в Государственном Совете 1816 г. реформы и комитеты, затеваемые Александром I не в силах были стронуть с места глубоко увязший воз самодержавия. В этом-то, с политической точки зрения, Иван Андреевич был прав. Но мы давайте выясним физический аспект. Прав ли Крылов? Для этого необходимо подробнее познакомиться с понятием равнодействующая сил, приложенных к телу.

    Сила, равная геометрической сумме всех приложенных к телу (точке) сил, называется равнодействующей или результирующей силой.

    Рисунок 1

    Как ведет себя данное тело? Либо покоится, либо движется прямолинейно и равномерно, т.к из I закона Ньютона следует, что существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела или действие этих тел скомпенсировано,

    т. е. |F 1 | = |F 2 | (вводится определение равнодействующей).

    Сила, которая производит на тело такое же действие, как и несколько одновременно действующих сил, называется равнодействующей этих сил.

    Нахождение равнодействующей нескольких сил - это геометрическое сложение действующих сил; выполняется по правилу треугольника или параллелограмма.

    На рисунке 1 R=0, т.к.

    Чтобы сложить два вектора, к концу первого вектора прикладывают начало второго и соединяют начало первого с концом второго (манипуляция на доске со стрелками на полиэтиленовой основе). Данный вектор и есть результирующая всех сил, приложенных к телу, т.е. R = F 1 – F 2 = 0

    Как можно, опираясь на определение равнодействующей силы, сформулировать I закон Ньютона? Уже известная формулировка I закона Ньютона:

    “Если на данное тело не действуют другие тела или действия других тел скомпенсированы (уравновешены), то это тело либо покоится, либо движется прямолинейно и равномерно”.

    Новая формулировка I закона Ньютона (дать формулировку I закона Ньютона под запись):

    “Если равнодействующая сил, приложенных к телу, равна нулю, то тело сохраняет свое состояние покоя или равномерного прямолинейного движения”.

    Как поступить при нахождении равнодействующей, если силы, приложенные к телу, направлены в одну сторону по одной прямой?

    Задача №1 (решение задачи №108 Григория Остера из задачника “Физика”).

    Дед, взявшись за репку, развивает силу тяги до 600 Н, бабка – до 100 Н, внучка – до 50 Н, Жучка – до 30 Н, кошка – до 10 Н и мышка – до 2 Н. Чему равна равнодействующая всех этих сил, направленных по одной прямой в одну и ту же сторону? Справилась бы с репкой эта компания без мышки, если силы, удерживающие репку в земле, равны 791 Н?

    (Манипуляция на доске со стрелками на полиэтиленовой основе).

    Ответ. Модуль равнодействующей силы, равный сумме модулей сил, с которыми дед тянет за репку, бабка за дедку, внучка за бабку, Жучка за внучку, кошка за Жучку, а мышка за кошку, будет равен 792 Н. Вклад мускульной силы мышки в этот могучий порыв равен 2 Н. Без Мышкиных ньютонов дело не пойдет.

    Задача №2.

    А если действующие на тело силы направлены под прямым углом друг к другу? (Манипуляция на доске со стрелками на полиэтиленовой основе).

    (Записываем правила с. 104 Шаталов “Опорные конспекты”).

    Задача №3.

    Попытаемся выяснить, прав ли в басне И.А. Крылов.

    Если считать, что сила тяги трех животных, описанных в басне, одинакова и сравнима (или более) с весом воза, а также превышает силу трения покоя, то, используя рисунок 2 (1) к задаче 3, получаем после построения равнодействующей, что И.А. Крылов, безусловно, прав.

    Если же использовать данные, приведенные ниже, подготовленные обучающимися заранее, то получаем немного другой результат (см. рисунок 2 (1) к задаче 3).

    Наименование Размеры, см Масса, кг Скорость, м/с
    Рак (речной) 0,2 - 0,5 0,3 - 0,5
    Щука 60 -70 3,5 – 5,5 8,3
    Лебедь 180 7 – 10 (13) 13,9 – 22,2

    Мощность, развиваемая телами при равномерном прямолинейном движении, которое возможно при равенстве силы тяги и силы сопротивления, может быть рассчитана по следующей формуле.