Но и множеством других факторов. Отношения эквивалентности. Фактор-множества. Смотреть что такое "Фактормножество" в других словарях

Пусть G={p 0 =e, p 1 , …, p r } есть некоторая группа подстановок, определенная на множестве X = {1, 2, …, n} с единицей e=p 0 тождественной подстановкой. Определим отношение x~y, положив x~y равносильно, что существует p принадлежащее G(p(x)=y). Введенное отношение есть отношение эквивалентности, то есть оно удовлетворяет трем аксиомам:

1) x~x;
2) x~y→y~x;
3) x~y&y~z→x~z;

Пусть А – произвольное множество.
Определение : Бинарное отношение δ=A*A есть отношение эквивалентности (обозначается a ~ b), если они удовлетворяет следующим аксиомам:
∀ a, b, c ∈ A
1) a ~ a – рефлексивность;
2) a ~ b ⇒ b ~ a – коммутативность;
3) a ~ b & b ~ c → a ~ c — транзитивность

обозначается a ~ b, σ(a,b), (a,b) ∈ σ, a σ b

Определение : Разбиение множества А есть семейство попарно не пресекающихся подмножеств из А, в объединении (в сумме) дающих все А.
А= ∪А i , А i ∩А j = ∅, ∀i ≠ j.

Подмножества А i называются смежными классами разбиения.

Теорема : каждое отношение эквивалентности, определенное на А, соответствует некоторому разбиению множества А. Всякое разбиение множества А соответствует некоторому отношению эквивалентности на множестве А.

Коротко: между классами всех определенных на множестве А отношений эквивалентностей и классом всех разбиений множества А существует взаимнооднозначное соответствие.

Доказательство : пусть σ — есть отношение эквивалентности на множестве А. Пусть а ∈ А.

Построим множество: К a ={x ∈ A,: x~a } – всех элементов, эквивалентных а. Множество (обозначение) называется классом эквивалентности относительно эквивалентности σ. Заметим, что если b принадлежит K a , то b~a. Покажем, что a~b⇔K a =K b . В самом деле, пусть a~b. Возьмем произвольный элемент c принадлежит K a . Тогда c~a, a~b, c~b, c принадлежит K b и потому K b принадлежит K a . То, что K a принадлежит K b , показывается аналогично. Следовательно, K b =K a .
Пусть теперь K b =K a . Тогда a принадлежит K a = K b , a принадлежит K b , a~b. Что и требовалось показать.

Если 2 класса K a и K b имеют общий элемент с, то K a = K b . В самом деле, если с принадлежит K a и K b , то b~c, c~a, b~a => K a = K b .

Поэтому различные классы эквивалентности либо не пересекаются, либо пересекаются и тогда совпадают. Всякий элемент с из А принадлежит только одному классу эквивалентности К с. Поэтому система непересекающихся классов эквивалентности в пересечении дает все множество А. И потому эта система есть разбиение множества А на классы эквивалентности.

Обратное: Пусть А = сумма по или A i – есть разбиение А. Введем на А отношение a~b, как a~b ⇔ a,b принадлежат одному и тому же классу разбиения. Это отношение удовлетворяет следующим аксиомам:

1) a ~ a (лежат в одном классе);
2) a ~ b → b ~ a;
3) a ~ b & b ~ c → a ~ c, т.е. введенное отношение ~ есть отношение эквивалентности.

Замечание :
1) разбиение множества А на одноэлементные подмножества и разбиение А, состоящие только из множества А, называется тривиальными (несобственным) разбиением.

2) Разбиение А на одноэлементные подмножества соответствует отношению эквивалентности которое есть равенство.

3) Разбиение А, состоящие из одного класса А, соответствует отношению эквивалентности, содержащему A x A.

4) a σ b → [a] σ = [b] σ — всякое отношение эквивалентности определенное на некотором множестве разбивает это множество на попарно не пересекающиеся классы называемые классами эквивалентности.

Определение : Совокупность классов эквивалентности множества А называется фактор-множеством A/σ множества А по эквивалентности σ.

Определение : Отображение p:A→A/σ, при котором p(A)=[a] σ , называется каноническим (естественным) отображением.

Всякое отношение эквивалентности, определенное на некотором множестве, разбивает это множество на попарно не пересекающиеся классы, называемые классами эквивалентности.

∼ {\displaystyle \sim } . Тогда множество всех классов эквивалентности называется фактормножеством и обозначается . Разбиение множества на классы эквивалентных элементов называется его факторизацией .

Отображение из X {\displaystyle X} в множество классов эквивалентности X / ∼ {\displaystyle X/\!\sim } называется факторотображением . Благодаря свойствам отношения эквивалентности, разбиение на множества единственно. Это означает, что классы, содержащие ∀ x , y ∈ X {\displaystyle \forall x,\;y\in X} , либо не пересекаются, либо совпадают полностью. Для любого элемента x ∈ X {\displaystyle x\in X} однозначно определён некоторый класс из X / ∼ {\displaystyle X/\!\sim } , иными словами существует сюръективное отображение из X {\displaystyle X} в X / ∼ {\displaystyle X/\!\sim } . Класс, содержащий x {\displaystyle x} , иногда обозначают [ x ] {\displaystyle [x]} .

Если множетво снабжено структурой, то часто отображение X → X / ∼ {\displaystyle X\to X/\!\sim } можно использовать чтобы снабдить фактормножество X / ∼ {\displaystyle X/\!\sim } той же структурой, например топологией. В этом случае множество X / ∼ {\displaystyle X/\!\sim } с индуцированной структурой называется факторпространством .

Энциклопедичный YouTube

    1 / 4

    ✪ 3. Классы эквивалентности

    ✪ Теория множеств Лекция 3 Часть 1

    ✪ Теория множеств Лекция 3 Часть 2

    ✪ Теория множеств Лекция 3 Часть 3

    Субтитры

Факторпространство по подпространству

Часто отношение эквивалентности вводят следующим образом. Пусть X {\displaystyle X} - линейное пространство , а L {\displaystyle L} - некоторое линейное подпространство. Тогда два элемента x , y ∈ X {\displaystyle x,\;y\in X} таких, что x − y ∈ L {\displaystyle x-y\in L} , называются эквивалентными . Это обозначается x ∼ L y {\displaystyle x\,{\overset {L}{\sim }}\,y} . Получаемое в результате факторизации пространство называют факторпространством по подпространству L {\displaystyle L} . Если X {\displaystyle X} разлагается в прямую сумму X = L ⊕ M {\displaystyle X=L\oplus M} , то существует изоморфизм из M {\displaystyle M} в X / ∼ L {\displaystyle X/\,{\overset {L}{\sim }}} . Если X {\displaystyle X} - конечномерное пространство , то факторпространство X / ∼ L {\displaystyle X/\,{\overset {L}{\sim }}} также является конечномерным и dim ⁡ X / ∼ L = dim ⁡ X − dim ⁡ L {\displaystyle \dim X/\,{\overset {L}{\sim }}=\dim X-\dim L} .

Примеры

. Можно рассмотреть фактормножество X / ∼ {\displaystyle X/\!\sim } . Функция f {\displaystyle f} задаёт естественное взаимноднозначное соответствие между X / ∼ {\displaystyle X/\!\sim } и Y {\displaystyle Y} .

Факторизацию множества разумно применять для получения нормированных пространств из полунормированных, пространств со скалярным произведением из пространств с почти скалярным произведением и пр. Для этого вводится соответственно норма класса, равная норме произвольного его элемента, и скалярное произведение классов как скалярное произведение произвольных элементов классов. В свою очередь отношение эквивалентности вводится следующим образом (например для образования нормированного факторпространства): вводится подмножество исходного полунормированного пространства, состоящее из элементов с нулевой полунормой (кстати, оно линейно, то есть является подпространством) и считается, что два элемента эквивалентны, если разность их принадлежит этому самому подпространству.

Если для факторизации линейного пространства вводится некоторое его подпространство и считается, что если разность двух элементов исходного пространства принадлежит этому подпространству, то эти элементы эквивалентны, то фактормножество является линейным пространством и называется факторпространством.

Пусть R – бинарное отношение на множестве X. Отношение R называется рефлексивным , если (x, x) Î R для всех x Î X; симметричным – если из (x, y) Î R следует (y, x) Î R; транзитивным числу 23 соответствует вариант 24 если (x, y) Î R и (y, z) Î R влекут (x, z) Î R.

Пример 1

Будем говорить, что x Î X имеет общее с элементом y Î X, если множество
x Ç y не пусто. Отношение иметь общее будет рефлексивным и симметричным, но не транзитивным.

Отношением эквивалентности на X называется рефлексивное, транзитивное и симметричное отношение. Легко видеть, что R Í X ´ X будет отношением эквивалентности тогда и только тогда, когда имеют место включения:

Id X Í R (рефлексивность),

R -1 Í R (симметричность),

R ° R Í R (транзитивность).

В действительности эти три условия равносильны следующим:

Id X Í R, R -1 = R, R ° R = R.

Разбиением множества X называется множество А попарно непересекающихся подмножеств a Í X таких, что UA = X. С каждым разбиением А можно связать отношение эквивалентности ~ на X, полагая x ~ y, если x и y являются элементами некоторого a Î A.

Каждому отношению эквивалентности ~ на X соответствует разбиение А, элементами которого являются подмножества, каждое из которых состоит из находящихся в отношении ~. Эти подмножества называются классами эквивалентности . Это разбиение А называется фактор-множеством множества X по отношению ~ и обозначается: X/~.

Определим отношение ~ на множестве w натуральных чисел, полагая x ~ y, если остатки от деления x и y на 3 равны между собой. Тогда w/~ состоит из трёх классов эквивалентности, соответствующих остаткам 0, 1 и 2.

Отношение порядка

Бинарное отношение R на множестве X называется антисимметричным , если из x R y и y R x следует: x = y. Бинарное отношение R на множестве X называется отношением порядка , если оно рефлексивно, антисимметрично и транзитивно. Легко видеть, что это равносильно выполнению следующих условий:

1) Id X Í R (рефлексивность),

2) R Ç R -1 (антисимметричность),

3) R ° R Í R (транзитивность).

Упорядоченная пара (X, R), состоящая из множества X и отношения порядка R на X, называется частично упорядоченным множеством .

Пример 1

Пусть X = {0, 1, 2, 3}, R = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (3, 3)}.

Поскольку R удовлетворяет условиям 1 – 3, то (X, R) – частично упорядоченное множество. Для элементов x = 2, y = 3, неверно ни x R y, ни y R x. Такие элементы называют несравнимыми . Обычно отношение порядка обозначают £. В приведенном примере 0 £ 1 и 2 £ 2, но неверно, что 2 £ 3.


Пример 2

Пусть < – бинарное отношение строгого неравенства на множестве w натуральных чисел, рассмотренное в разд. 1.2. Тогда объединение отношений = и < является отношением порядка £ на w и превращает w в частично упорядоченное множество.

Элементы x, y Î X частично упорядоченного множества (X, £) называются сравнимыми , если x £ y либо y £ x.

Частично упорядоченное множество (X, £) называется линейно упорядоченным или цепью , если любые два его элемента сравнимы. Множество из примера 2 будет линейно упорядоченным, а из примера 1 – нет.

Подмножество A Í X частично упорядоченного множества (X, £) называется ограниченным сверху , если существует такой элемент x Î X, что a £ x для всех a Î A. Элемент x Î X называется наибольшим в X, если y £ x для всех y Î X. Элемент x Î X называется максимальным, если нет отличных от x элементов y Î X, для которых x £ y. В примере 1 элементы 2 и 3 будут максимальными, но не наибольшими. Аналогично определяются ограничение снизу подмножества, наименьший и минимальный элементы. В примере 1 элемент 0 будет и наименьшим и минимальным. В примере 2 этими свойствами также обладает 0, но в (w, £) нет ни наибольшего, ни максимального элемента.

Математическим анализом называется раздел математики, занимающийся исследованием функций на основе идеи бесконечно малой функции.

Основными понятиями математического анализа являются величина, множество, функция, бесконечно малая функция, предел, производная, интеграл.

Величиной называется все что может быть измерено и выражено числом.

Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п.

Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записывают x Х ( — принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В ( — содержится).

Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.

Например, перечислением заданы следующие множества:
  • А={1,2,3,5,7} — множество чисел
  • Х={x 1 ,x 2 ,...,x n } — множество некоторых элементов x 1 ,x 2 ,...,x n
  • N={1,2,...,n} — множество натуральных чисел
  • Z={0,±1,±2,...,±n} — множество целых чисел

Множество (-∞;+∞) называется числовой прямой , а любое число — точкой этой прямой. Пусть a — произвольная точка числовой прямой иδ — положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а .

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным . Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Основные числовые множества

N {1,2,3,...,n} Множество всех
Z {0, ±1, ±2, ±3,...} Множество целых чисел. Множество целых чисел включает в себя множество натуральных.
Q

Множество рациональных чисел .

Кроме целых чисел имеются ещё и дроби. Дробь — это выражение вида , где p — целое число, q — натуральное. Десятичные дроби также можно записать в виде . Например: 0,25 = 25/100 = 1/4. Целые числа также можно записать в виде . Например, в виде дроби со знаменателем "один": 2 = 2/1.

Таким образом любое рациональное число можно записать десятичной дробью — конечно или бесконечной периодической.

R

Множество всех вещественных чисел .

Иррациональные числа — это бесконечные непериодические дроби. К ним относятся:

Вместе два множества (рациональных и иррациональных чисел) — образуют множество действительных (или вещественных) чисел.

Если множество не содержит ни одного элемента, то оно называется пустым множеством и записывается Ø .

Элементы логической символики

Запись ∀x: |x|<2 → x 2 < 4 означает: для каждого x такого, что |x|<2, выполняется неравенство x 2 < 4.

Квантор

При записи математических выражений часто используются кванторы.

Квантором называется логический символ, который характеризует следующие за ним элементы в количественном отношении.

  • ∀- квантор общности , используется вместо слов "для всех", "для любого".
  • ∃- квантор существования , используется вместо слов "существует", "имеется". Используется также сочетание символов ∃!, которое читается как существует единственный.

Операции над множествами

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

Свойства операций над множествами

Свойства перестановочности

A ∪ B = B ∪ A
A ∩ B = B ∩ A

Сочетательное свойство

(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Счетные и несчетные множества

Для того, чтобы сравнить два каких-либо множества А и В, между их элементами устанавливают соответствие.

Если это соответствие взаимооднозначное, то множества называются эквивалентными или равномощными, А В или В А.

Пример 1

Множество точек катета ВС и гипотенузы АС треугольника АВС являются равномощными.